981 resultados para Current intensity
Resumo:
A new accelerometer, the Kenz Lifecorder EX (LC; Suzuken Co. Ltd, Nagoya, Japan), offers promise as a feasible monitor alternative to the commonly used Actigraph (AG: Actigraph LLC, Fort Walton Beach, FL). Purpose: This study compared the LC and AG accelerometers and the Yamax SW-200 pedometer (DW) under free-living conditions with regard to children's steps taken and time in light-intensity physical activity (PA) and moderate to vigorous PA (MVPA). Methods: Participants (N = 31, age = 10.2 ± 0.4 yr) wore LC, AG, and DW monitors from arrival at school (7:45 a.m.) until they went to bed. Time in light and MVPA intensities were calculated using two separate intensity classifications for the LC (LC_4 and LC_5) and four classifications for the AG (AG_Treuth, AG_Puyau, AG_Trost, and AG_Freedson). Both accelerometers provided steps as outputs. DW steps were self-recorded. Repeated-measures ANOVA was used to assess overlapping monitor outputs. Results: There was no difference between DW and LC steps (Δ = 200 steps), but a nonsignificant trend was observed in the pairwise comparison between DW and AG steps (Δ = 1001 steps, P = 0.058). AG detected significantly greater steps than the LC (Δ = 801 steps, P = 0.001). Estimates of light-intensity activity minutes ranged from a low of 75.6 ± 18.4 min (LC_4) to a high of 309 ± 69.2 min (AG_Treuth). Estimates of MVPA minutes ranged from a low of 25.9 ± 9.4 min (LC_5) to a high of 112.2 ± 34.5 min (AG_Freedson). No significant differences in MVPA were seen between LC_5 and AG_Treuth (Δ = 4.9 min) or AG_Puyau (Δ = 1.7 min). Conclusion: The LC detected a comparable number of steps as the DW but significantly fewer steps than the AG in children. Current results indicate that the LC_5 and either AG_Treuth or AG_Puyau intensity derivations provide similar mean estimates of time in MVPA during-free living activity in 10-yr-old children.
Resumo:
In the past, training in clinical psychology in Australia and overseas has been dominated by definitions of input— hours of classes or supervision and of specific components. While prospective practitioners have been required to demonstrate the acquisition of generic competencies, satisfaction of these input driven criteria has been required for both accreditation and registration. Ironically, for a discipline that prides itself on requiring empirical bases for practice and communicating those to students (Calhoun, Moras, Pilkonis, & Rehm, 1998), training criteria have been primarily derived from accepted wisdom, rather than from a sound body of data. The situation has been remarkably like that of a treatment establishing standards of fidelity before its effective components are known—an action our profession has correctly criticised in the past (Herbert & Mueser, 1992).
Resumo:
This paper seeks to explore how organisations can effectively use performance management systems (PMS) to monitor collective identities. The monitoring of relationships between identity and an influential PMS—the balanced scorecard (BSC)—are explored. Drawing from identity and management accounting literature, this paper argues that identity products, patternings and processes are commonly positioned, monitored and interpreted through the multiple perspectives and levels of the BSC. Specifically, human, technical and organisational capital under the Learning and Growth perspective of the BSC can incorporate various identity measures that sustain the relative, distinctive and fluid nature of identities. The value of this research is to strengthen the theoretical grounds which position identity as an important dimension of organisational capital in PMS.
Resumo:
Nowadays, business process management is an important approach for managing organizations from an operational perspective. As a consequence, it is common to see organizations develop collections of hundreds or even thousands of business process models. Such large collections of process models bring new challenges and provide new opportunities, as the knowledge that they encapsulate requires to be properly managed. Therefore, a variety of techniques for managing large collections of business process models is being developed. The goal of this paper is to provide an overview of the management techniques that currently exist, as well as the open research challenges that they pose.
Resumo:
This chapter looks at the challenges and opportunities of current affairs in British public service broadcasting
Resumo:
This paper presents a three-dimensional numerical analysis of the electromagnetic forces within a high voltage superconducting Fault Current Limiter (FCL) with a saturated core under short-circuit conditions. The effects of electrodynamics forces in power transformer coils under short-circuit conditions have been reported widely. However, the coil arrangement in an FCL with saturated core differs significantly from existing reactive devices. The boundary element method is employed to perform an electromagnetic force analysis on an FCL. The analysis focuses on axial and radial forces of the AC coil. The results are compared to those of a power transformer and important design considerations are highlighted.
Resumo:
The International Classification of Diseases (ICD) is used to categorise diseases, injuries and external causes, and is a key epidemiological tool enabling the storage and retrieval of data from health and vital records to produce core international mortality and morbidity statistics. The ICD is updated periodically to ensure the classification remains current and work is now underway to develop the next revision, ICD-11. There have been almost 20 years since the last ICD edition was published and over 60 years since the last substantial structural revision of the external causes chapter. Revision of such a critical tool requires transparency and documentation to ensure that changes made to the classification system are recorded comprehensively for future reference. In this paper, the authors provide a history of external causes classification development and outline the external cause structure. Approaches to manage ICD-10 deficiencies are discussed and the ICD-11 revision approach regarding the development of, rationale for and implications of proposed changes to the chapter are outlined. Through improved capture of external cause concepts in ICD-11, a stronger evidence base will be available to inform injury prevention, treatment, rehabilitation and policy initiatives to ultimately contribute to a reduction in injury morbidity and mortality.
Resumo:
There has been much written about the Internet’s potential to enhance international market growth opportunities for SME’s. However, the literature is vague as to how Internet usage and the application of Internet marketing also known as Internet marketing intensity has an impact on firm international market growth. This paper examines the level and role of the Internet in the international operations of a sample of 218 Australian SMEs with international customers. This study shows evidence of a statistical relationship between Internet usage and Internet marketing intensity, which in turn leads to international market growth, in terms of increased sales from new customers in new countries, new customers in existing countries and from existing customers.
Resumo:
This paper reviews the current state in the application of infrared methods, particularly mid-infrared (mid-IR) and near infrared (NIR), for the evaluation of the structural and functional integrity of articular cartilage. It is noted that while a considerable amount of research has been conducted with respect to tissue characterization using mid-IR, it is almost certain that full-thickness cartilage assessment is not feasible with this method. On the contrary, the relatively more considerable penetration capacity of NIR suggests that it is a suitable candidate for full-thickness cartilage evaluation. Nevertheless, significant research is still required to improve the specificity and clinical applicability of the method if we are going to be able to use it for distinguishing between functional and dysfunctional cartilage.
Resumo:
In cross-organizational, distributed environments, Business Process Management requires collaborative technologies to facilitate the process of discovering, modeling, and improving business processes across geographical and organizational boundaries. This paper provides a comprehensive understanding of collaborative business process modeling that is based on a review of literature and a case study of three selected modelling tools. The application of the framework reveals that current process modeling tools consider different perspectives on collaboration, and that the included features are orthogonal. This paper informs practitioners about the state of the art in tool support for collaborative process modelling. It also informs vendors about opportunities to enhance the technology support. For research, our paper paper informs social aspects of BPM technology through its explicit focus on the collaboration of BPM stakeholders in the process of distributed modeling.
Resumo:
Observational seatbelt wearing studies are a valuable tool for obtaining up-to-date information about rates of use. Given that one quarter of vehicle occupants killed on Queensland roads in recent years were not wearing seatbelts, it is important that authorities are able to identify non-wearers and take steps to increase compliance with seatbelt laws to reduce the severity of crashes and, therefore, the road toll. An observational study of seatbelt use was conducted in metropolitan, regional and rural locations throughout Queensland in May and June, 2010. Trained observers took note of seatbelt use of all occupants of passenger vehicles, noting their gender, approximate age group, seating position, vehicle type, licence type (i.e. visible L or P plates), mobile phone use, and the date, time and location of the observation. Of 19,579 observations, 99.04% (19,391) of occupants were observed wearing seatbelts, as only 0.96% of occupants (188) were not wearing a seatbelt. There were differences in seatbelt wearing rates for a number of study variables, although most were very small. However, seatbelt wearing rates were 3.84% lower for drivers observed using a mobile phone than for those who were not. While compliance with seatbelt laws seems to be very high, it is still concerning that so few non-wearers represent a disproportionately large proportion of road fatalities and serious injuries in Queensland. Road safety authorities must therefore continue to find ways to improve seatbelt use, as small gains in wearing rates will translate into significant fatality reductions.
Resumo:
The cycling interaction between climate change and building performance is of dynamic nature and both are essentially the cause and the effect of each other. On one hand, buildings contribute significantly to the global warming process. On the other hand, climate change is also expected to impact on many aspects of building performance. In this paper, the status of current research on the implication of climate change on built environment is reviewed. It is found that although the present research has covered broad areas of research, they are generally only limited to the qualitative analyses. It is also highlighted that although it is widely realized that reducing greenhouse gas emissions from the building sector is very important, the adoption of complementary adaptation strategy to prepare the building for a range of climate change scenarios is also necessary. Due to the lack of holistic approach to generate future hourly weather data, various approaches have been used to generate different key weather variables. This ad hoc situation has seriously hindered the application of building simulation technique to the climate change impact study, in particular, to provide quantitative information for policy and design development.
Resumo:
One of the major challenges in achieving long term robot autonomy is the need for a SLAM algorithm that can perform SLAM over the operational lifetime of the robot, preferably without human intervention or supervision. In this paper we present insights gained from a two week long persistent SLAM experiment, in which a Pioneer robot performed mock deliveries in a busy office environment. We used the biologically inspired visual SLAM system, RatSLAM, combined with a hybrid control architecture that selected between exploring the environment, performing deliveries, and recharging. The robot performed more than a thousand successful deliveries with only one failure (from which it recovered), travelled more than 40 km over 37 hours of active operation, and recharged autonomously 23 times. We discuss several issues arising from the success (and limitations) of this experiment and two subsequent avenues of work.
Resumo:
It is frequently reported that the actual weight loss achieved through exercise interventions is less than theoretically expected. Amongst other compensatory adjustments that accompany exercise training (e.g., increases in resting metabolic rate and energy intake), a possible cause of the less than expected weight loss is a failure to produce a marked increase in total daily energy expenditure due to a compensatory reduction in non-exercise activity thermogenesis (NEAT). Therefore, there is a need to understand how behaviour is modified in response to exercise interventions. The proposed benefits of exercise training are numerous, including changes to fat oxidation. Given that a diminished capacity to oxidise fat could be a factor in the aetiology of obesity, an exercise training intensity that optimises fat oxidation in overweight/obese individuals would improve impaired fat oxidation, and potentially reduce health risks that are associated with obesity. To improve our understanding of the effectiveness of exercise for weight management, it is important to ensure exercise intensity is appropriately prescribed, and to identify and monitor potential compensatory behavioural changes consequent to exercise training. In line with the gaps in the literature, three studies were performed. The aim of Study 1 was to determine the effect of acute bouts of moderate- and high-intensity walking exercise on NEAT in overweight and obese men. Sixteen participants performed a single bout of either moderate-intensity walking exercise (MIE) or high-intensity walking exercise (HIE) on two separate occasions. The MIE consisted of walking for 60-min on a motorised treadmill at 6 km.h-1. The 60-min HIE session consisted of walking in 5-min intervals at 6 km.h-1 and 10% grade followed by 5-min at 0% grade. NEAT was assessed by accelerometer three days before, on the day of, and three days after the exercise sessions. There was no significant difference in NEAT vector magnitude (counts.min-1) between the pre-exercise period (days 1-3) and the exercise day (day 4) for either protocol. In addition, there was no change in NEAT during the three days following the MIE session, however NEAT increased by 16% on day 7 (post-exercise) compared with the exercise day (P = 0.32). During the post-exercise period following the HIE session, NEAT was increased by 25% on day 7 compared with the exercise day (P = 0.08), and by 30-33% compared with the pre-exercise period (day 1, day 2 and day 3); P = 0.03, 0.03, 0.02, respectively. To conclude, a single bout of either MIE or HIE did not alter NEAT on the exercise day or on the first two days following the exercise session. However, extending the monitoring of NEAT allowed the detection of a 48 hour delay in increased NEAT after performing HIE. A longer-term intervention is needed to determine the effect of accumulated exercise sessions over a week on NEAT. In Study 2, there were two primary aims. The first aim was to test the reliability of a discontinuous incremental exercise protocol (DISCON-FATmax) to identify the workload at which fat oxidation is maximised (FATmax). Ten overweight and obese sedentary male men (mean BMI of 29.5 ¡Ó 4.5 kg/m2 and mean age of 28.0 ¡Ó 5.3 y) participated in this study and performed two identical DISCON-FATmax tests one week apart. Each test consisted of alternate 4-min exercise and 2-min rest intervals on a cycle ergometer. The starting work load of 28 W was increased every 4-min using 14 W increments followed by 2-min rest intervals. When the respiratory exchange ratio was consistently >1.0, the workload was increased by 14 W every 2-min until volitional exhaustion. Fat oxidation was measured by indirect calorimetry. The mean FATmax, ƒtV O2peak, %ƒtV O2peak and %Wmax at which FATmax occurred during the two tests were 0.23 ¡Ó 0.09 and 0.18 ¡Ó 0.08 (g.min-1); 29.7 ¡Ó 7.8 and 28.3 ¡Ó 7.5 (ml.kg-1.min-1); 42.3 ¡Ó 7.2 and 42.6 ¡Ó 10.2 (%ƒtV O2max) and 36.4 ¡Ó 8.5 and 35.4 ¡Ó 10.9 (%), respectively. A paired-samples T-test revealed a significant difference in FATmax (g.min-1) between the tests (t = 2.65, P = 0.03). The mean difference in FATmax was 0.05 (g.min-1) with the 95% confidence interval ranging from 0.01 to 0.18. Paired-samples T-test, however, revealed no significant difference in the workloads (i.e. W) between the tests, t (9) = 0.70, P = 0.4. The intra-class correlation coefficient for FATmax (g.min-1) between the tests was 0.84 (95% confidence interval: 0.36-0.96, P < 0.01). However, Bland-Altman analysis revealed a large disagreement in FATmax (g.min-1) related to W between the two tests; 11 ¡Ó 14 (W) (4.1 ¡Ó 5.3 ƒtV O2peak (%)).These data demonstrate two important phenomena associated with exercise-induced substrate oxidation; firstly, that maximal fat oxidation derived from a discontinuous FATmax protocol differed statistically between repeated tests, and secondly, there was large variability in the workload corresponding with FATmax. The second aim of Study 2 was to test the validity of a DISCON-FATmax protocol by comparing maximal fat oxidation (g.min-1) determined by DISCON-FATmax with fat oxidation (g.min-1) during a continuous exercise protocol using a constant load (CONEX). Ten overweight and obese sedentary males (BMI = 29.5 ¡Ó 4.5 kg/m2; age = 28.0 ¡Ó 4.5 y) with a ƒtV O2max of 29.1 ¡Ó 7.5 ml.kg-1.min-1 performed a DISCON-FATmax test consisting of alternate 4-min exercise and 2-min rest intervals on a cycle ergometer. The 1-h CONEX protocol used the workload from the DISCON-FATmax to determine FATmax. The mean FATmax, ƒtV O2max, %ƒtV O2max and workload at which FATmax occurred during the DISCON-FATmax were 0.23 ¡Ó 0.09 (g.min-1); 29.1 ¡Ó 7.5 (ml.kg-1.min-1); 43.8 ¡Ó 7.3 (%ƒtV O2max) and 58.8 ¡Ó 19.6 (W), respectively. The mean fat oxidation during the 1-h CONEX protocol was 0.19 ¡Ó 0.07 (g.min-1). A paired-samples T-test revealed no significant difference in fat oxidation (g.min-1) between DISCON-FATmax and CONEX, t (9) = 1.85, P = 0.097 (two-tailed). There was also no significant correlation in fat oxidation between the DISCON-FATmax and CONEX (R=0.51, P = 0.14). Bland- Altman analysis revealed a large disagreement in fat oxidation between the DISCONFATmax and CONEX; the upper limit of agreement was 0.13 (g.min-1) and the lower limit of agreement was ¡V0.03 (g.min-1). These data suggest that the CONEX and DISCONFATmax protocols did not elicit different rates of fat oxidation (g.min-1). However, the individual variability in fat oxidation was large, particularly in the DISCON-FATmax test. Further research is needed to ascertain the validity of graded exercise tests for predicting fat oxidation during constant load exercise sessions. The aim of Study 3 was to compare the impact of two different intensities of four weeks of exercise training on fat oxidation, NEAT, and appetite in overweight and obese men. Using a cross-over design 11 participants (BMI = 29 ¡Ó 4 kg/m2; age = 27 ¡Ó 4 y) participated in a training study and were randomly assigned initially to: [1] a lowintensity (45%ƒtV O2max) exercise (LIT) or [2] a high-intensity interval (alternate 30 s at 90%ƒtV O2max followed by 30 s rest) exercise (HIIT) 40-min duration, three times a week. Participants completed four weeks of supervised training and between cross-over had a two week washout period. At baseline and the end of each exercise intervention,ƒtV O2max, fat oxidation, and NEAT were measured. Fat oxidation was determined during a standard 30-min continuous exercise bout at 45%ƒtV O2max. During the steady state exercise expired gases were measured intermittently for 5-min periods and HR was monitored continuously. In each training period, NEAT was measured for seven consecutive days using an accelerometer (RT3) the week before, at week 3 and the week after training. Subjective appetite sensations and food preferences were measured immediately before and after the first exercise session every week for four weeks during both LIT and HIIT. The mean fat oxidation rate during the standard continuous exercise bout at baseline for both LIT and HIIT was 0.14 ¡Ó 0.08 (g.min-1). After four weeks of exercise training, the mean fat oxidation was 0.178 ¡Ó 0.04 and 0.183 ¡Ó 0.04 g.min-1 for LIT and HIIT, respectively. The mean NEAT (counts.min-1) was 45 ¡Ó 18 at baseline, 55 ¡Ó 22 and 44 ¡Ó 16 during training, and 51 ¡Ó 14 and 50 ¡Ó 21 after training for LIT and HIIT, respectively. There was no significant difference in fat oxidation between LIT and HIIT. Moreover, although not statistically significant, there was some evidence to suggest that LIT and HIIT tend to increase fat oxidation during exercise at 45% ƒtV O2max (P = 0.14 and 0.08, respectively). The order of training treatment did not significantly influence changes in fat oxidation, NEAT, and appetite. NEAT (counts.min-1) was not significantly different in the week following training for either LIT or HIIT. Although not statistically significant (P = 0.08), NEAT was 20% lower during week 3 of exercise training in HIIT compared with LIT. Examination of appetite sensations revealed differences in the intensity of hunger, with higher ratings after LIT compared with HIIT. No differences were found in preferences for high-fat sweet foods between LIT and HIIT. In conclusion, the results of this thesis suggest that while fat oxidation during steady state exercise was not affected by the level of exercise intensity, there is strong evidence to suggest that intense exercise could have a debilitative effect on NEAT.
Resumo:
The design of pre-contoured fracture fixation implants (plates and nails) that correctly fit the anatomy of a patient utilises 3D models of long bones with accurate geometric representation. 3D data is usually available from computed tomography (CT) scans of human cadavers that generally represent the above 60 year old age group. Thus, despite the fact that half of the seriously injured population comes from the 30 year age group and below, virtually no data exists from these younger age groups to inform the design of implants that optimally fit patients from these groups. Hence, relevant bone data from these age groups is required. The current gold standard for acquiring such data–CT–involves ionising radiation and cannot be used to scan healthy human volunteers. Magnetic resonance imaging (MRI) has been shown to be a potential alternative in the previous studies conducted using small bones (tarsal bones) and parts of the long bones. However, in order to use MRI effectively for 3D reconstruction of human long bones, further validations using long bones and appropriate reference standards are required. Accurate reconstruction of 3D models from CT or MRI data sets requires an accurate image segmentation method. Currently available sophisticated segmentation methods involve complex programming and mathematics that researchers are not trained to perform. Therefore, an accurate but relatively simple segmentation method is required for segmentation of CT and MRI data. Furthermore, some of the limitations of 1.5T MRI such as very long scanning times and poor contrast in articular regions can potentially be reduced by using higher field 3T MRI imaging. However, a quantification of the signal to noise ratio (SNR) gain at the bone - soft tissue interface should be performed; this is not reported in the literature. As MRI scanning of long bones has very long scanning times, the acquired images are more prone to motion artefacts due to random movements of the subject‟s limbs. One of the artefacts observed is the step artefact that is believed to occur from the random movements of the volunteer during a scan. This needs to be corrected before the models can be used for implant design. As the first aim, this study investigated two segmentation methods: intensity thresholding and Canny edge detection as accurate but simple segmentation methods for segmentation of MRI and CT data. The second aim was to investigate the usability of MRI as a radiation free imaging alternative to CT for reconstruction of 3D models of long bones. The third aim was to use 3T MRI to improve the poor contrast in articular regions and long scanning times of current MRI. The fourth and final aim was to minimise the step artefact using 3D modelling techniques. The segmentation methods were investigated using CT scans of five ovine femora. The single level thresholding was performed using a visually selected threshold level to segment the complete femur. For multilevel thresholding, multiple threshold levels calculated from the threshold selection method were used for the proximal, diaphyseal and distal regions of the femur. Canny edge detection was used by delineating the outer and inner contour of 2D images and then combining them to generate the 3D model. Models generated from these methods were compared to the reference standard generated using the mechanical contact scans of the denuded bone. The second aim was achieved using CT and MRI scans of five ovine femora and segmenting them using the multilevel threshold method. A surface geometric comparison was conducted between CT based, MRI based and reference models. To quantitatively compare the 1.5T images to the 3T MRI images, the right lower limbs of five healthy volunteers were scanned using scanners from the same manufacturer. The images obtained using the identical protocols were compared by means of SNR and contrast to noise ratio (CNR) of muscle, bone marrow and bone. In order to correct the step artefact in the final 3D models, the step was simulated in five ovine femora scanned with a 3T MRI scanner. The step was corrected using the iterative closest point (ICP) algorithm based aligning method. The present study demonstrated that the multi-threshold approach in combination with the threshold selection method can generate 3D models from long bones with an average deviation of 0.18 mm. The same was 0.24 mm of the single threshold method. There was a significant statistical difference between the accuracy of models generated by the two methods. In comparison, the Canny edge detection method generated average deviation of 0.20 mm. MRI based models exhibited 0.23 mm average deviation in comparison to the 0.18 mm average deviation of CT based models. The differences were not statistically significant. 3T MRI improved the contrast in the bone–muscle interfaces of most anatomical regions of femora and tibiae, potentially improving the inaccuracies conferred by poor contrast of the articular regions. Using the robust ICP algorithm to align the 3D surfaces, the step artefact that occurred by the volunteer moving the leg was corrected, generating errors of 0.32 ± 0.02 mm when compared with the reference standard. The study concludes that magnetic resonance imaging, together with simple multilevel thresholding segmentation, is able to produce 3D models of long bones with accurate geometric representations. The method is, therefore, a potential alternative to the current gold standard CT imaging.