963 resultados para Crystalline rocks.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature dependent Brillouin scattering studies have been performed to ascertain the influence of solvent dynamics on ion-transport in succinonitrile-lithium salt plastic crystalline electrolytes. Though very rarely employed, we observe that Brillouin spectroscopy is an invaluable tool for investigation of solvent dynamics. Analysis of various acoustic (long wavelength) phonon modes observed in the Brillouin scattering spectra reveal the influence of trans-gauche isomerism and as well as ion-association effects on ion transport. Although pristine SN and dilute SN-LiClO(4) samples show only the bulk longitudinal-acoustic (LA) mode, concentrated SN-LiClO(4) (similar to 0.3-1 M) electrolytes display both the bulk LA mode as well as salt induced brillouin modes at ambient temperature. The appearance of more than one brillouin mode is attributed to the scattering of light from regions with different compressibilities (''compactness''). Correspondingly, these modes show a large decrease in the full width at half-maximum (abbreviated as nu(f)) as the temperature decreases. Anomalous temperature dependent behavior of nu(f) with addition of salt could be attributed to the presence of disorder or strong coupling with a neighbor. The shape of the spectrum was evaluated using a Lorentzian and Fano line shape function depending on the nature and behavior of the Brillouin modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical transport measurements on ultrathin single-crystalline Au nanowires, synthesized via a wet chemical route, show an unexpected insulating behavior. The linear response electrical resistance exhibits a power-law dependence on temperature. In addition, the variation of current over a wide range of temperature and voltage obeys a universal scaling relation that provides compelling evidence for a non-Fermi liquid behavior. Our results demonstrate that the quantum ground state In ultrathin nanowires of simple metallic systems can be radically different from their bulk counterparts and can be described In terms of a Tomonaga-Luttinger liquid (TLL), in the presence of remarkably strong electron-electron interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tie lines delineating ion-exchange equilibria between FeCr2O4FeAl2O4 spinel solid solution and Cr2O3Al2O3 solid solution with corundum structure have been determined at 1373 K by electron microprobe and EDAX point count analysis of oxide phases equilibrated with metallic iron. Activities in the spinel solid solution are derived from the tie lines and the thermodynamic data on Cr2O3Al2O3 solid solution available in the literature. The oxygen potentials corresponding to the tie-line composition of oxide phases in equilibrium with metallic iron were measured using solid oxide galvanic cells with CaOZrO2 and Y2O3ThO2 electrolytes. These electrochemical measurements also yield activities in the spinel solid solution, in good agreement with those obtained from tie lines. The activity-composition relationship in the spinel solid solution is analysed in terms of the intra-crystalline ion exchange between the tetrahedral and octahedral sites of the spinel structures. The ion exchange is governed by site-preference energies of the cations and the entropy of cations mixing on each site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron diffraction and high-resolution electron microscopy have been employed to differentiate among icosahedral, decagonal and crystalline particles that occur in as-cast and rapidly solidified Al-Mn-Cu alloys. The resemblance between decagonal quasicrystals and crystals in their electron diffraction patterns is striking. The crystalline structure is based on the orthorhombic ‘Al3Mn’ structure, but also a new monoclinic phase called ‘X’ has been discovered and described here. The present observations are also closely related to the orthorhombic structures in Al60Mn11Ni4. The occurrence of fine-scale twinning and fragmentation into domains explains the complex diffraction effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The liquid crystalline phase represents a unique state of matter where partial order exists on molecular and supra-molecular levels and is responsible for several interesting properties observed in this phase. Hence a detailed study of ordering in liquid crystals is of significant scientific and technological interest. NMR provides several parameters that can be used to obtain information about the liquid crystalline phase. Of these, the measurement of dipolar couplings between nuclei has proved to be a convenient way of obtaining liquid crystalline ordering since the coupling is dependent on the average orientation of the dipolar vector in the magnetic field which also aligns the liquid crystal.However, measurement of the dipolar coupling between a pair of selected nuclei is beset with problems that require special solutions. In this article the use of cross polarization for measuring dipolar couplings in liquid crystals is illustrated. Transient oscillations observed during cross polarization provide the dipolar couplings between essentially isolated nearest neighbor spins which can be extracted for several sites simultaneously by employing two-dimensional NMR techniques. The use of the method for obtaining heteronuclear dipolar couplings and hence the order parameters of liquid crystals is presented. Several modifications to the basic experiment are considered and their utility illustrated. A method for obtaining proton–proton dipolar couplings, by utilizing cross polarization from the dipolar reservoir, is presented. Some applications are also highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper considers the formation of crystalline phases during solidification and crystallisation of the Zr53Cu21Al10Ni8Ti8 alloy. Solidification was carried out by a copper mould casting technique, which yielded a partially crystalline microstructure comprising a `big cube phase' in a dendritic morphology and a bct Zr2Ni phase. Detailed high-resolution microscopy was carried out to determine possible mechanisms for the formation of the crystalline phases. Based on microstructural examinations, it was established that the dendrites grew by the attachment of atomistic ledges. The bct Zr2Ni phase, formed during solidification and crystallisation, showed various types of faults depending on the crystallite size, and its crystallography was examined in detail. It has been shown that the presence of these faults could be explained by anti-site occupancy in the bct lattice of the Zr2Ni phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results from elasto-plastic numerical simulations of jointed rocks using both the equivalent continuum and discrete continuum approaches are presented, and are compared with experimental measurements. Initially triaxial compression tests on different types of rocks with wide variation in the uniaxial compressive strength are simulated using both the approaches and the results are compared. The applicability and relative merits and limitations of both the approaches for the simulation of jointed rocks are discussed. It is observed that both the approaches are reasonably good in predicting the real response. However, the equivalent continuum approach has predicted somewhat higher stiffness values at low strains. Considering the modelling effort involved in case of discrete continuum approach, for problems with complex geometry, it is suggested that a proper equivalent continuum model can be used, without compromising much on the accuracy of the results. Then the numerical analysis of a tunnel in Japan is taken up using the continuum approach. The deformations predicted are compared well against the field measurements and the predictions from discontinuum analysis. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk metallic glass (BMG) matrix composites with crystalline dendrites as reinforcements exhibit a wide variance in their microstructures (and thus mechanical properties), which in turn can be attributed to the processing route employed, which affects the size and distribution of the dendrites. A critical investigation on the microstructure and tensile properties of Zr/Ti-based BMG composites of the same composition, but produced by different routes, was conducted so as to identify ``structure-property'' connections in these materials. This was accomplished by employing four different processing methods-arc melting, suction casting, semi-solid forging and induction melting on a water-cooled copper boat-on composites with two different dendrite volume fractions, V-d. The change in processing parameters only affects microstructural length scales such as the interdendritic spacing, lambda, and dendrite size, delta, whereas compositions of the matrix and dendrite are unaffected. Broadly, the composite's properties are insensitive to the microstructural length scales when V-d is high (similar to 75%), whereas they become process dependent for relatively lower V-d (similar to 55%). Larger delta in arc-melted and forged specimens result in higher ductility (7-9%) and lower hardening rates, whereas smaller dendrites increase the hardening rate. A bimodal distribution of dendrites offers excellent ductility at a marginal cost of yield strength. Finer lambda result in marked improvements in both ductility and yield strength, due to the confinement of shear band nucleation sites in smaller volumes of the glassy phase. Forging in the semi-solid state imparts such a microstructure. (c) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deformation and recrystallization textures in nano-crystalline nickel with average grain size of 20 nm were investigated using X-ray diffraction, electron microscopy and differential scanning calorimetry. The deformation behaviour of nano-crystalline nickel is quite complicated due to intervention of other deformation mechanisms like grain boundary sliding and restoration mechanisms like grain growth and grain rotation to dislocation mediated slip. Recrystallization studies carried out on the deformed nano-crystalline nickel showed that the deformation texture was retained during low temperature annealing (300 degrees C), while at higher temperature (1000 degrees C), the texture got randomised. The exact mechanism of texture formation during deformation and recrystallization has been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In submitted research; nanocrystalline powders having elements Ni0.5Cu0.25Zn0.25Fe2 xInxO4 with varied amounts of indium ( x = 0.0, 0.1, 0.2, 0.3 and 0.4) were grown-up by modified citrate to nitrate alchemy. The realism of single phase cubic spinel creation of the synthesized ferrite samples was studied by the DTA-TGA, XRD, SEM, EDX, FT-IR, VSM and dielectric measurements. SEM was applied to inspect the morphological variations and EDX was used to determine the compositional mass ratios. The studies on the dielectric constant (epsilon'), dielectric loss (epsilon `'), loss tangent (tan delta), ac conductivity (sigma(ac)), resistive and reactive parts of the impedance analysis (Z' and Z `') at room temperature were also carried out. The saturation magnetizations (Ms) were determined using the vibrating sample magnetometer (VSM). Ms. decreased with the increase In3+ doping content, as Fe3+ of 5(mu B) ions are replaced by In3+ of 5 mu(B) ions. (C) 2012 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic plastic crystalline soft matter ion conductors are interesting alternatives to liquid electrolytes in electrochemical storage devices such as Lithium-ion batteries. The solvent dynamics plays a major role in determining the ion transport in plastic crystalline ion conductors. We present here an analysis of the frequency-dependent ionic conductivity of succinonitrile-based plastic crystalline ion conductors at varying salt composition (0.005 to 1 M) and temperature (-20 to 60 degrees C) using time-temperature superposition principle (TTSP). The main motivation of the work has been to establish comprehensive insight into the ion transport mechanism from a single method viz, impedance spectroscopy rather than employing cluster of different characterization methods probing various length and time scales. The TTSP remarkably aids in explicit identification of the extent of the roles of solvent dynamics and ion-ion interactions on the effective conductivity of the orientationally disordered plastic crystalline ion conductors.