953 resultados para Crustal Assimilation
Resumo:
We investigate the error dynamics for cycled data assimilation systems, such that the inverse problem of state determination is solved at tk, k = 1, 2, 3, ..., with a first guess given by the state propagated via a dynamical system model from time tk − 1 to time tk. In particular, for nonlinear dynamical systems that are Lipschitz continuous with respect to their initial states, we provide deterministic estimates for the development of the error ||ek|| := ||x(a)k − x(t)k|| between the estimated state x(a) and the true state x(t) over time. Clearly, observation error of size δ > 0 leads to an estimation error in every assimilation step. These errors can accumulate, if they are not (a) controlled in the reconstruction and (b) damped by the dynamical system under consideration. A data assimilation method is called stable, if the error in the estimate is bounded in time by some constant C. The key task of this work is to provide estimates for the error ||ek||, depending on the size δ of the observation error, the reconstruction operator Rα, the observation operator H and the Lipschitz constants K(1) and K(2) on the lower and higher modes of controlling the damping behaviour of the dynamics. We show that systems can be stabilized by choosing α sufficiently small, but the bound C will then depend on the data error δ in the form c||Rα||δ with some constant c. Since ||Rα|| → ∞ for α → 0, the constant might be large. Numerical examples for this behaviour in the nonlinear case are provided using a (low-dimensional) Lorenz '63 system.
Resumo:
The formulation and performance of the Met Office visibility analysis and prediction system are described. The visibility diagnostic within the limited-area Unified Model is a function of humidity and a prognostic aerosol content. The aerosol model includes advection, industrial and general urban sources, plus boundary-layer mixing and removal by rain. The assimilation is a 3-dimensional variational scheme in which the visibility observation operator is a very nonlinear function of humidity, aerosol and temperature. A quality control scheme for visibility data is included. Visibility observations can give rise to humidity increments of significant magnitude compared with the direct impact of humidity observations. We present the results of sensitivity studies which show the contribution of different components of the system to improved skill in visibility forecasts. Visibility assimilation is most important within the first 6-12 hours of the forecast and for visibilities below 1 km, while modelling of aerosol sources and advection is important for slightly higher visibilities (1-5 km) and is still significant at longer forecast times
Resumo:
The possibility of using a time sequence of surface pressure observations in four-dimensional data assimilation is being investigated. It is shown that a linear multilevel quasi-geostrophic model can be updated successfully with surface data alone, provided the number of time levels are at least as many as the number of vertical levels. It is further demonstrated that current statistical analysis procedures are very inefficient to assimilate surface observations, and it is shown by numerical experiments that the vertical interpolation must be carried out using the structure of the most dominating baroclinic mode in order to obtain a satisfactory updating. Different possible ways towards finding a practical solution are being discussed.
Resumo:
A system for continuous data assimilation described recently (Bengtsson & Gustavsson, 1971) has been further developed and tested under more realistic conditions. A balanced barotropic model is used and the integration is performed over an octagon covering the area to the north of 20° N. Comparisons have been made between using data from the actual aerological network and data from a satellite in a polar orbit. The result of the analyses has been studied in different subregions situated in data sparse as well as in data dense areas. The errors of the analysis have also been studied in the wave spectrum domain. Updating is performed using data generated by the model but also by model-independent data. Rather great differences are obtained between the two experiments especially with respect to the ultra-long waves. The more realistic approach gives much larger analysis error. In general the satellite updating yields somewhat better result than the updating from the conventional aerological network especially in the data sparse areas over the oceans. Most of the experiments are performed by a satellite making 200 observations/track, a sidescan capability of 40° and with a RMS-error of 20 m. It is found that the effect of increasing the number of satellite observations from 100 to 200 per orbit is almost negligible. Similarly the effect is small of improving the observations by diminishing the RMS-error below a certain value. An observing system using two satellites 90° out of phase has also been investigated. This is found to imply a substantial improvement. Finally an experiment has been performed using actual SIRS-soundings from NIMBUS IV. With respect to the very small number of soundings at 500 mb, 142 during 48 hours, the result can be regarded as quite satisfactory.
Resumo:
A system for continuous data assimilation is presented and discussed. To simulate the dynamical development a channel version of a balanced barotropic model is used and geopotential (height) data are assimilated into the models computations as data become available. In the first experiment the updating is performed every 24th, 12th and 6th hours with a given network. The stations are distributed at random in 4 groups in order to simulate 4 areas with different density of stations. Optimum interpolation is performed for the difference between the forecast and the valid observations. The RMS-error of the analyses is reduced in time, and the error being smaller the more frequent the updating is performed. The updating every 6th hour yields an error in the analysis less than the RMS-error of the observation. In a second experiment the updating is performed by data from a moving satellite with a side-scan capability of about 15°. If the satellite data are analysed at every time step before they are introduced into the system the error of the analysis is reduced to a value below the RMS-error of the observation already after 24 hours and yields as a whole a better result than updating from a fixed network. If the satellite data are introduced without any modification the error of the analysis is reduced much slower and it takes about 4 days to reach a comparable result to the one where the data have been analysed.
Resumo:
Numerical weather prediction can be regarded as an initial value problem whereby the governing atmospheric equations are integrated forward from fully determined initial values of the meteorological parameters. However, in spite of the considerable improvements of the observing systems in recent years, the initial values are known only incompletely and inaccurately and one of the major tasks of any forecasting centre is to determine the best possible initial state from available observations.
Resumo:
The purpose of this lecture is to review recent development in data analysis, initialization and data assimilation. The development of 3-dimensional multivariate schemes has been very timely because of its suitability to handle the many different types of observations during FGGE. Great progress has taken place in the initialization of global models by the aid of non-linear normal mode technique. However, in spite of great progress, several fundamental problems are still unsatisfactorily solved. Of particular importance is the question of the initialization of the divergent wind fields in the Tropics and to find proper ways to initialize weather systems driven by non-adiabatic processes. The unsatisfactory ways in which such processes are being initialized are leading to excessively long spin-up times.
Resumo:
Considerable progress has taken place in numerical weather prediction over the last decade. It has been possible to extend predictive skills in the extra-tropics of the Northern Hemisphere during the winter from less than five days to seven days. Similar improvements, albeit on a lower level, have taken place in the Southern Hemisphere. Another example of improvement in the forecasts is the prediction of intense synoptic phenomena such as cyclogenesis which on the whole is quite successful with the most advanced operational models (Bengtsson (1989), Gadd and Kruze (1988)). A careful examination shows that there are no single causes for the improvements in predictive skill, but instead they are due to several different factors encompassing the forecasting system as a whole (Bengtsson, 1985). In this paper we will focus our attention on the role of data-assimilation and the effect it may have on reducing the initial error and hence improving the forecast. The first part of the paper contains a theoretical discussion on error growth in simple data assimilation systems, following Leith (1983). In the second part we will apply the result on actual forecast data from ECMWF. The potential for further forecast improvements within the framework of the present observing system in the two hemispheres will be discussed.
Resumo:
With the introduction of new observing systems based on asynoptic observations, the analysis problem has changed in character. In the near future we may expect that a considerable part of meteorological observations will be unevenly distributed in four dimensions, i.e. three dimensions in space and one in time. The term analysis, or objective analysis in meteorology, means the process of interpolating observed meteorological observations from unevenly distributed locations to a network of regularly spaced grid points. Necessitated by the requirement of numerical weather prediction models to solve the governing finite difference equations on such a grid lattice, the objective analysis is a three-dimensional (or mostly two-dimensional) interpolation technique. As a consequence of the structure of the conventional synoptic network with separated data-sparse and data-dense areas, four-dimensional analysis has in fact been intensively used for many years. Weather services have thus based their analysis not only on synoptic data at the time of the analysis and climatology, but also on the fields predicted from the previous observation hour and valid at the time of the analysis. The inclusion of the time dimension in objective analysis will be called four-dimensional data assimilation. From one point of view it seems possible to apply the conventional technique on the new data sources by simply reducing the time interval in the analysis-forecasting cycle. This could in fact be justified also for the conventional observations. We have a fairly good coverage of surface observations 8 times a day and several upper air stations are making radiosonde and radiowind observations 4 times a day. If we have a 3-hour step in the analysis-forecasting cycle instead of 12 hours, which is applied most often, we may without any difficulties treat all observations as synoptic. No observation would thus be more than 90 minutes off time and the observations even during strong transient motion would fall within a horizontal mesh of 500 km * 500 km.