981 resultados para Crop rotation.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

"Five hundred copies printed by The Morrill Press February, 1936."

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vol. 1. Soils, formation, physical and chemical characteristics and methods of improvement, including tillage, drainage & irrigation -- v. 2. Manures, fertilizers & farm crops, including green manuring and crop rotation -- v. 3. Animal husbandry, including the breeds of live stock, the general principles of breeding, feeding animals; including discussion of ensilage, dairy management on the farm and poultry farming.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Includes bibliographical references (p. 60-64).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To establish the identity of Fusarium species associated with head blight (FHB) and crown rot (CR) of wheat, samples were collected from wheat paddocks with different cropping history in southern Queensland and northern New South Wales during 2001. CR was more widespread but FHB was only evident in northern NSW and often occurred with CR in the same paddock. Twenty different Fusarium spp. were identified from monoconidial isolates originating from different plant parts by using morphology and species-specific PCR assays. Fusarium pseudograminearum constituted 48% of all isolates and was more frequently obtained from the crown, whereas Fusarium graminearum made up 28% of all isolates and came mostly from the head. All 17 Fusarium species tested caused FHB and all 10 tested caused CR in plant infection assays, with significant (P < 0.001) difference in aggressiveness among species and among isolates within species for both diseases. Overall, isolates from stubble and crown were more aggressive for CR, whereas isolates from the flag leaf node were more aggressive for FHB. Isolates that were highly aggressive in causing CR were those originating from paddocks with wheat following wheat, whereas those from fields with wheat following maize or sorghum were highly aggressive for FHB. Although 20% of isolates caused severe to highly severe FHB and CR, there was no significant (P < 0.32) correlation between aggressiveness for FHB and CR. Given the ability of F. graminearum to colonise crowns in the field and to cause severe CR in bioassays, it is unclear why this pathogen is not more widely distributed in Australia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oomycete diseases cause significant losses across a broad range of crop and aquaculture commodities worldwide. These losses can be greatly reduced by disease management practices steered by accurate and early diagnoses of pathogen presence. Determinations of disease potential can help guide optimal crop rotation regimes, varietal selections, targeted control measures, harvest timings and crop post-harvest handling. Pathogen detection prior to infection can also reduce the incidence of disease epidemics. Classical methods for the isolation of oomycete pathogens are normally deployed only after disease symptom appearance. These processes are often-time consuming, relying on culturing the putative pathogen(s) and the availability of expert taxonomic skills for accurate identification; a situation that frequently results in either delayed application, or routine ‘blanket’ over-application of control measures. Increasing concerns about pesticides in the environment and the food chain, removal or restriction of their usage combined with rising costs have focussed interest in the development and improvement of disease management systems. To be effective, these require timely, accurate and preferably quantitatve diagnoses. A wide range of rapid diagnostic tools, from point of care immunodiagnostic kits to next generation nucleotide sequencing have potential application in oomycete disease management. Here we review currently-available as well as promising new technologies in the context of commercial agricultural production systems, considering the impacts of specific biotic and abiotic and other important factors such as speed and ease of access to information and cost effectiveness

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Economic losses resulting from disease development can be reduced by accurate and early detection of plant pathogens. Early detection can provide the grower with useful information on optimal crop rotation patterns, varietal selections, appropriate control measures, harvest date and post harvest handling. Classical methods for the isolation of pathogens are commonly used only after disease symptoms. This frequently results in a delay in application of control measures at potentially important periods in crop production. This paper describes the application of both antibody and DNA based systems to monitor infection risk of air and soil borne fungal pathogens and the use of this information with mathematical models describing risk of disease associated with environmental parameters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Central Highlands region has a unique climate that presents both challenges and novel farming systems opportunities for cotton production. We have been re-examining the Emerald climate in a bid to identify opportunities that might enable the production of more consistent cotton yields and quality in what can be a highly variable climate. A detailed climatic analysis identified that spring and early summer is the most optimal period for boll growth and maturation. However, to unlock this potential requires unseasonal winter sowing that is 4 to 6 weeks earlier than the traditional mid-September sowing. Our experiments have sought answers to two questions: i) how much earlier can cotton be sown for reliable crop establishment and high yield; ii) can degradable plastic film mulches minimise the impact of potentially cold temperatures on crop establishment and early vigour. Initial data suggests August sowing offers the potential to grow a high yield at a time of year with reduced risk of cloud and high night temperatures during boll growth. For the past two seasons late winter sowing (with and without film) has resulted in a compact plant with high retention that physiologically matures by the beginning of January. Even with the spectre of replanting cotton in some seasons due to frost in August, early sowing would appear to offer the opportunity for more efficient crop input usage, simplified agronomic management and new crop rotation options during late summer and autumn. This talk will present an overview of results to date.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soilborne diseases such as Fusarium wilt, Black root rot and Verticillium wilt have significant impact on cotton production. Fungi are an important component of soil biota with capacity to affect pathogen inoculum levels and their disease causing potential. Very little is known about the soil fungal community structure and management effects in Australian cotton soils. We analysed surface soils from ongoing field experiments monitoring cotton performance and disease incidence in three cotton growing regions, collected prior to 2013 planting, for the genetic diversity and abundance as influenced by soil type, environment and management practices and link it with disease incidence and suppression. Results from the 28S LSU rRNA sequencing based analysis indicated a total of 370 fungal genera in all the cotton soils and the top 25 genera in abundance accounted for the major portion of total fungal community. There were significant differences in the composition and genetic diversity of soil fungi between the different field sites from the three cotton growing regions. Results for diversity indices showed significantly greater diversity in the long-term crop rotation experiment at Narrabri (F6E) and experiments at Cowan and Goondiwindi compared to the Biofumigation and D1 field experiments at ACRI, Narrabri. Diversity was lowest in the soils under brassica crop rotation in Biofumigation experiment. Overall, the diversity and abundance of soil fungal community varied significantly in the three cotton growing regions indicating soil type and environmental effects. These results suggest that changes in soil fungal community may play a notable role in soilborne disease incidence in cotton.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Fitopatologia, Programa de Pós-Graduação em Fitopatologia, 2016.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In most agroecosystems, nitrogen (N) is the most important nutrient limiting plant growth. One management strategy that affects N cycling and N use efficiency (NUE) is conservation agriculture (CA), an agricultural system based on a combination of minimum tillage, crop residue retention and crop rotation. Available results on the optimization of NUE in CA are inconsistent and studies that cover all three components of CA are scarce. Presently, CA is promoted in the Yaqui Valley in Northern Mexico, the country´s major wheat-producing area in which from 1968 to 1995, fertilizer application rates for the cultivation of irrigated durum wheat (Triticum durum L.) at 6 t ha-1 increased from 80 to 250 kg ha-1, demonstrating the high intensification potential in this region. Given major knowledge gaps on N availability in CA this thesis summarizes the current knowledge of N management in CA and provides insights in the effects of tillage practice, residue management and crop rotation on wheat grain quality and N cycling. Major aims of the study were to identify N fertilizer application strategies that improve N use efficiency and reduce N immobilization in CA with the ultimate goal to stabilize cereal yields, maintain grain quality, minimize N losses into the environment and reduce farmers’ input costs. Soil physical and chemical properties in CA were measured and compared with those in conventional systems and permanent beds with residue burning focusing on their relationship to plant N uptake and N cycling in the soil and how they are affected by tillage and N fertilizer timing, method and doses. For N fertilizer management, we analyzed how placement, time and amount of N fertilizer influenced yield and quality parameters of durum and bread wheat in CA systems. Overall, grain quality parameters, in particular grain protein concentration decreased with zero-tillage and increasing amount of residues left on the field compared with conventional systems. The second part of the dissertation provides an overview of applied methodologies to measure NUE and its components. We evaluated the methodology of ion exchange resin cartridges under irrigated, intensive agricultural cropping systems on Vertisols to measure nitrate leaching losses which through drainage channels ultimately end up in the Sea of Cortez where they lead to algae blooming. A throughout analysis of N inputs and outputs was conducted to calculate N balances in three different tillage-straw systems. As fertilizer inputs are high, N balances were positive in all treatments indicating the risk of N leaching or volatilization during or in subsequent cropping seasons and during heavy rain fall in summer. Contrary to common belief, we did not find negative effects of residue burning on soil nutrient status, yield or N uptake. A labeled fertilizer experiment with urea 15N was implemented in micro-plots to measure N fertilizer recovery and the effects of residual fertilizer N in the soil from summer maize on the following winter crop wheat. Obtained N fertilizer recovery rates for maize grain were with an average of 11% very low for all treatments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As the world population and food production demands rise, keeping agricultural soils and landscapes healthy and productive are of paramount importance to sustaining local and global food security and the flow of ecosystem services to society. The global population, expected to reach 9.7 billion people by 2050, will put additional pressure on the available land area and resources for agricultural production. Sustainable production intensification for food security is a major challenge to both industrialized and developing countries. The paper focuses on the results from long-term multi-factorial experiments involving tillage practices, crop rotations and fertilization to study the interactions amongst the treatments in the context of sustainable production intensification. The paper discusses the results in relation to reported performance of crops and soil quality in Conservation Agriculture systems that are based on no or minimum soil disturbance (no-till seeding and weeding), maintenance of soil mulch cover with crop biomass and cover crops, and diversified cropping systems involving annuals and perennials. Conservation Agriculture also emphasizes the necessity of an agro-ecosystems approach to the management of agricultural land for sustainable production intensification, as well as to the site-specificity of agricultural production. Arguments in favor of avoiding the use of soil tillage are discussed together with agro-ecological principles for sustainable intensification of agriculture. More interdisciplinary systems research is required to support the transformation of agriculture from the conventional tillage agriculture to a more sustainable agriculture based on the principles and practices of Conservation Agriculture, along with other complementary practices of integrated crop, nutrient, water, pest, energy and farm power management.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soil is a key resource that provides the basis of food production and sustains and delivers several ecosystems services including regulating and supporting services such as water and climate regulation, soil formation and the cycling of nutrients carbon and water. During the last decades, population growth, dietary changes and the subsequent pressure on food production, have caused severe damages on soil quality as a consequence of intensive, high input-based agriculture. While agriculture is supposed to maintain and steward its most important resource base, it compromises soil quality and fertility through its impact on erosion, soil organic matter and biodiversity decline, compaction, etc., and thus the necessary yield increases for the next decades. New or improved cropping systems and agricultural practices are needed to ensure a sustainable use of this resource and to fully take the advantages of its associated ecosystem services. Also, new and better soil quality indicators are crucial for fast and in-field soil diagnosis to help farmers decide on the best management practices to adopt under specific pedo-climatic conditions. Conservation Agriculture and its fundamental principles: minimum (or no) soil disturbance, permanent organic soil cover and crop rotation /intercropping certainly figure among the possibilities capable to guarantee sustainable soil management. The iSQAPER project – Interactive Soil Quality Assessment in Europe and China for Agricultural Productivity and Environmental Resilience – is tackling this problem with the development of a Soil Quality application (SQAPP) that links soil and agricultural management practices to soil quality indicators and will provide an easy-to-use tool for farmers and land managers to judge their soil status. The University of Évora is the leader of WP6 - Evaluating and demonstrating measures to improve Soil Quality. In this work package, several promising soil and agricultural management practices will be tested at selected sites and evaluated using the set of soil quality indicators defined for the SQAPP tool. The project as a whole and WP6 in specific can contribute to proof and demonstrate under different pedoclimatic conditions the impact of Conservation Agriculture practices on soil quality and function as was named the call under which this project was submitted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conservation Agriculture (CA) is mostly referred to in the literature as having three principles at the core of its identity: minimum soil disturbance, permanent organic soil cover and crop diversity. This farming package has been described as suitable to improve yields and livelihoods of smallholders in semi-arid regions of Kenya, which since the colonial period have been heavily subjected to tillage. Our study is based on a qualitative approach that followed local meanings and understandings of soil fertility, rainfall and CA in Ethi and Umande located in the semi-arid region of Laikipia, Kenya. Farm visits, 53 semistructured interviews, informal talks were carried out from April to June 2015. Ethi and Umande locations were part of a resettlement programme after the independence of Kenya that joined together people coming from different farming contexts. Since the 1970–80s, state and NGOs have been promoting several approaches to control erosion and boost soil fertility. In this context, CA has also been promoted preferentially since 2007. Interviewees were well acquainted with soil erosion and the methods to control it. Today, rainfall amount and distribution are identified as major constraints to crop performance. Soil fertility is understood as being under control since farmers use several methods to boost it (inorganic fertilisers, manure, terraces, agroforestry, vegetation barriers). CA is recognised to deliver better yields but it is not able to perform well under severe drought and does not provide yields as high as ‘promised’ in promotion campaigns. Moreover, CA is mainly understood as “cultivating with chemicals”, “kulima na dawa”, in kiswahili. A dominant view is that CA is about minimum tillage and use of pre-emergence herbicides. It is relevant to reflect about what kind of CA is being promoted and if elements like soil cover and crop rotation are given due attention. CA based on these two ideas, minimum tillage and use of herbicides, is hard to stand as a programme to be promoted and up-scaled. Therefore CA appears not to be recognised as a convincing approach to improve the livelihoods in Laikipia.