884 resultados para Critical care


Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-voltage electric injuries have many manifestations, and an important complication is the damage of the central/peripheral nervous system. The purpose of this work was to assess the upper limb dysfunction in patients injured by high-voltage current. The evaluation consisted of analysis of patients` records, cutaneous-sensibility threshold, handgrip and pinch strength and a specific questionnaire about upper limb dysfunctions (DASH) in 18 subjects. All subjects were men; the average age at the time of the injury was 38 years. Of these, 72% changed job/retired after the injury. The current entrance was the hand in 94% and grounding in the lower limb in 78%. The average burned surface area (BSA) was 8.6%. The handgrip strength of the injured limb was reduced (p < 0.05) and so also that of the three pinch types. The relationship between the handgrip strength and the DASH was statistically significant (p < 0.001) as well as the relationship between the three pinch types (p <= 0.02) to the injured limb. The ability to perceive cutaneous touch/pressure was decreased in the burnt hand, principally in the median nerve area. These data indicate a reduction of the hand muscular strength and sensibility, reducing the function of the upper limb in patients who received high-voltage electrical shock. (C) 2008 Elsevier Ltd and ISBI. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sepsis is still a major cause of mortality in the intensive critical care unit and results from an overwhelming immune response to the infection. TNF signaling pathway plays a central role in the activation of innate immunity in response to pathogens. Using a model of polymicrobial sepsis by i.p. injection of cecal microflora, we demonstrate a critical role of TNFR1 and R2 activation in the deregulated immune responses and death associated with sepsis. A large and persistent production of TNF was found in wild-type (B6) mice. TNFR1/R2-deficient mice, compared with B6 mice, survive lethal polymicrobial infection with enhanced neutrophil recruitment and bacterial clearance in the peritoneal cavity. Absence of TNFR signaling leads to a decreased local and systemic inflammatory response with diminished organ injury. Furthermore, using TNFR1/R2-deficient mice, TNF was found to be responsible for a decrease in CXCR2 expression, explaining reduced neutrophil extravasation and migration to the infectious site, and in neutrophil apoptosis. In line with the clinical experience, administration of Enbrel, a TNF-neutralizing protein, induced however only a partial protection in B6 mice, with no improvement of clinical settings, suggesting that future TNF immunomodulatory strategies should target TNFR1 and R2. In conclusion, the present data suggest that the endogenous TNFR1/R2 signaling pathway in polymicrobial sepsis reduces neutrophil recruitment contributing to mortality and as opposed to pan-TNF blockade is an important therapeutic target for the treatment of polymicrobial sepsis. The Journal of Immunology, 2009, 182: 7855-7864.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reduction of neutrophil migration to an infectious focus is associated with a high mortality in severe sepsis. Previously, we showed that heme oxygenase (HO) products downregulate neutrophil recruitment in a noninfectious inflammatory model. The present study was designed to determine the role of HO in sepsis induced by cecal ligation and puncture (CLP) model. We demonstrated that pretreatment, but not the combination of pretreatment plus posttreatment with zinc protoporphyrin IX (ZnPP IX), an HO inhibitor, prevented the reduction of CXCR2 on circulating neutrophils and the failure of intraperitoneal neutrophil migration to the site of infection. Consequently, bacterial dissemination, systemic inflammatory response, and organ injury were prevented. In addition, pretreatment with the HO inhibitor avoided hypotension and consequently increased survival. Moreover, in mice subjected to severe CLP, the pretreatment, but not the combination of pretreatment plus posttreatment with ZnPP IX, prevented the increase of plasmatic free heme observed in nontreated severe CLP. The administration of exogenous hemin to mice subjected to moderate sepsis consistently increased the mortality rate. Furthermore, hemin resulted in a reduction of neutrophil migration both in vivo and in vitro. Altogether, our results demonstrated that pretreatment with the HO inhibitor prevents the pathological findings in severe CLP. However, the combination of pretreatment plus posttreatment with ZnPP IX enhances sepsis severity because of an increase in circulating levels of heme, which is deleterious to the host tissues and also inhibits neutrophil migration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neutrophils are key effectors of the innate immune response. Reduction of neutrophil migration to infection sites is associated with a poor outcome in sepsis. We have demonstrated a failure of neutrophil migration in lethal sepsis. Together with this failure, we observed more bacteria in both peritoneal exudates and blood, followed by a reduction in survival rate. Furthermore, neutrophils obtained from severe septic patients displayed a marked reduction in chemotactic response compared with neutrophils from healthy subjects. The mechanisms of neutrophil migration failure are not completely understood. However, it is known that they involve systemic Toll-like receptor activation by bacteria and/or their products and result in excessive levels of circulating cytokines/chemokines. These mediators acting together with LPS stimulate expression of iNOS that produces high amounts of NO, which in turn mediates the failure of neutrophil migration. NO reduced expression of CXCR2 on neutrophils and the levels of adhesion molecules on both endothelial cells and neutrophils. These events culminate in decreased endothelium-leukocyte interactions, diminished neutrophil chemotactic response, and neutrophil migration failure. Additionally, the NO effect, at least in part, is mediated by peroxynitrite. In this review, we summarize what is known regarding the mechanisms of neutrophil migration impairment in severe sepsis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rationale: The reduction of neutrophil migration to the bacterial focus is associated with poor outcome in sepsis. Objectives: The objective of this study was to identify soluble substances in the blood of septic mice that inhibit neutrophil migration. Methods: A pool of serum obtained from mice 2 hours after the induction of severe sepsis by cecal ligation and puncture inhibited the neutrophil migration. The proteins with inhibitory activity on neutrophil migration were isolated by Blue-Sepharose chromatography, high-performance liquid chromatography, and electrophoresis, and identified by mass spectrometry. Measurements and Main Results: Hemopexin was identified as the serum component responsible for the inhibition of neutrophil migration. In sepsis, the pretreatment of wild-type mice with hemopexin inhibited neutrophil migration to the focus of infection and decreased the survival rate from 87.5 to 50.0%. Hemopexin-null mice subjected to severe sepsis presented normal neutrophil migration, low bacteremia, and an improvement of 40% in survival rate. Moreover, hemopexin inhibited the neutrophil chemotaxis response evoked by C5a or macrophage inflammatory protein-2 and induced a reduction of CXCR2 and L-selectin as well as the up-regulation of CD11b expression in neutrophil membranes. The inhibitory effect of hemopexin on neutrophil chemotaxis was prevented by serine protease inhibitors or ATP. In addition, serum levels of ATP were decreased 2 hours after severe sepsis. Conclusions: These data demonstrate for the first time the inhibitory role of hemopexin in neutrophil migration during sepsis and suggest that the therapeutic inhibition of hemopexin or its protease activity could improve neutrophil migration to the focus of infection and survival in sepsis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rationale Sepsis is defined as a systemic inflammatory response to infection, which in its severe form is associated with multiple organ dysfunction syndrome (MODS). The precise mechanisms by Which MODS develops remain unclear. Neutrophils have a pivotal role in the defense against infections; however, overwhelming activation of neutrophils is known to elicit tissue damage. Objectives: We investigated the role of the chemokine receptor CCR2 in driving neutrophil infiltration and eliciting tissue damage in remote organs during sepsis. Methods: Sepsis was induced in wild-type mice treated with CCR2 antagonist (RS504393) or CCR2(-/-) mice by cecal ligation and puncture (CLP) model. Neutrophil infiltration into the organs was measured by myeloperoxidase activity and fluorescence-activated cell sorter. CCR2 expression and chemotaxis were determined in neutrophils stimulated with Toll-like receptor agonists or isolated from septic mice and patients. Measurements and Main Results: CCR2 expression and responsiveness to its ligands was induced in circulating neutrophils during CLP-induced sepsis by a mechanism dependent on Toll-like receptor/nuclear factor-kappa B pathway. Genetic or pharmacologic inhibition of CCR2 protected mice from CLP-induced mortality. This protection was associated with lower infiltration of neutrophils into the lungs, heart, and kidneys and reduced serum biochemical indicators of organ injury and dysfunction. Importantly, neutrophils from septic patients express high levels of CCR2, and the severity of patient illness correlated positively with increasing neutrophil chemotaxis to CCR2 ligands. Conclusions: Collectively, these data identify CCR2 as a key receptor that drives the inappropriate infiltration of neutrophils into remote organs during sepsis. Therefore, CCR2 blockade is a novel potential therapeutic target for treatment of sepsis-induced MODS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sepsis results from an overwhelming response to infection and is a major contributor to death in intensive care units worldwide. In recent years, we and others have shown that neutrophil functionality is impaired in sepsis. This correlates with sepsis severity and contributes to aggravation of sepsis by precluding bacterial clearance. Nitric oxide (NO) is a major contributor to the impairment of neutrophil function in sepsis. However, attempts to inhibit NO synthesis in sepsis resulted in increased death despite restoring neutrophil migration. This could be in part attributed to a reduction of the NO-dependent microbicidal activity of neutrophils. In sepsis, the beneficial effects resulting from the inhibition of soluble guanylyl cyclase (sGC), a downstream target of NO, have long been appreciated but poorly understood. However, the effects of sGC inhibition on neutrophil function in sepsis have never been addressed. In the present study, we show that TLR activation in human neutrophils leads to decreased chemotaxis, which correlated with chemotactic receptor internalization and increased G protein-coupled receptor kinase 2 expression, in a process involving the NO-sGC-protein kinase G axis. We also demonstrate that inhibition of sGC activity increased survival in a murine model of sepsis, which was paralleled by restored neutrophil migratory function and increased bacterial clearance. Finally, the beneficial effect of sGC inhibition could also be demonstrated in mice treated after the onset of sepsis. Our results suggest that the beneficial effects of sGC inhibition in sepsis could be at least in part attributed to a recovery of neutrophil functionality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rationale Sepsis is a leading cause of death in the intensive care unit, characterized by a systemic inflammatory response (SIRS) and bacterial infection, which can often induce multiorgan damage and failure. Leukocyte recruitment, required to limit bacterial spread, depends on phosphoinositide-3 kinase gamma (PI3K gamma) signaling in vitro; however, the role of this enzyme in polymicrobial sepsis has remained unclear. Objectives: This study aimed to determine the specific role of the kinase activity of PI3K gamma in the pathogenesis of sepsis and multiorgan damage. Methods. PI3K gamma wild-type, knockout, and kinase-dead mice were exposed to cecal ligation and perforation induced sepsis and assessed for survival; pulmonary, hepatic, and cardiovascular damage; coagulation derangements; systemic inflammation; bacterial spread; and neutrophil recruitment. Additionally, wild-type mice were treated either before or after the onset of sepsis with a PI3K gamma inhibitor and assessed for survival, neutrophil recruitment, and bacterial spread. Measurements and Main Results: Both genetic and pharmaceutical PI3K gamma kinase inhibition significantly improved survival, reduced multiorgan damage, and limited bacterial decompartmentalization, while modestly affecting SIRS. Protection resulted from both neutrophil-independent mechanisms, involving improved cardiovascular function, and neutrophil-dependent mechanisms, through reduced susceptibility to neutrophil migration failure during severe sepsis by maintaining neutrophil surface expression of the chemokine receptor, CXCR2. Furthermore, PI3K gamma pharmacological inhibition significantly decreased mortality and improved neutrophil migration and bacterial control, even when administered during established septic shock. Conclusions: This study establishes PI3K gamma as a key molecule in the pathogenesis of septic infection and the transition from SIRS to organ damage and identifies it as a novel possible therapeutic target.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sepsis develops when the initial host response is unable to contain the primary infection, resulting in widespread inflammation and multiple organ dysfunction. The impairment of neutrophil migration into the infection site, also termed neutrophil paralysis, is a critical hallmark of sepsis, which is directly related to the severity of the disease. Although the precise mechanism of this phenomenon is not fully understood, there has been much advancement in the understanding of this field. In this review, we highlight the recent insights into the molecular mechanisms of neutrophil paralysis during sepsis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: To investigate the role of regulatory T cells in the modulation of long-term immune dysfunction during experimental sepsis. It is well established that sepsis predisposes to development of a pronounced immunosuppression. Nevertheless, the mechanisms underlying the immune dysfunction after sepsis are still not well understood. Design: Prospective experimental study. Setting: University research laboratory. Interventions: Wild-type mice underwent cecal ligation and puncture and were treated with antibiotic during 3 days after surgery. On days 1, 7, or 15 after cecal ligation and puncture, the frequency of regulatory T cells, proliferation of CD4(+) T cells and bacterial counts were evaluated. Fifteen days after cecal ligation and puncture, surviving mice underwent secondary pulmonary infection by intranasal inoculation of nonlethal dose of Legionella pneumophila. Some mice received agonistic glucocorticoid-induced tumor necrosis factor receptor antibody (DTA-1) before induction of secondary infection. Measurements and Main Results: Mice surviving cecal ligation and puncture showed a markedly increased frequency of regulatory T cells in thymus and spleen, which was associated with reduced proliferation of CD4(+) T cells. Fifteen days after cecal ligation and puncture, all sepsis-surviving mice succumbed to nonlethal injection of L. pneumophila. Treatment of mice with DTA-1 antibody reduced frequency of regulatory T cells, restored CD4(+) T cell proliferation, reduced the levels of bacteria in spleen, and markedly improved survival of L. pneumophila infection. Conclusion: These findings suggest that regulatory T cells play an important role in the progression and establishment of immune dysfunction observed in experimental sepsis. (Crit Care Med 2010; 38: 1718-1725)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rationale Recovering the neutrophil migration to the infectious focus improves survival in severe sepsis. Recently, we demonstrated that the cystathionine gamma-lyase (CSE)/hydrogen sulfide (H(2)S) pathway increased neutrophil recruitment to inflammatory focus during sterile inflammation. Objectives: To evaluate if H(2)S administration increases neutrophil migration to infectious focus and survival of mice. Methods. Sepsis was induced by cecal ligation and puncture (CLP) Measurements and Main Results. The pretreatments of mice with H2S donors (NaHS or Lawesson`s reagent) improved leukocyte rolling/adhesion in the mesenteric microcirculation as well as neutrophil migration. Consequently, bacteremia levels were reduced, hypotension and lung lesions were prevented, and the survival rate increased from approximately 13% to approximately 80% Even when treatment was delayed (6 h after CLP), a highly significant reduction in mortality compared with untreated mice was observed Moreover, H(2)S pretreatment prevented the down-regulation of CXCR2 and L-selectin and the up-regulation of CD11b and G protein-coupled receptor kinase 2 in neutrophils during sepsis. H(2)S also prevented the reduction of intercellular adhesion molecule-1 expression in the endothelium of the mesenteric microcirculation in severe sepsis Confirming the critical role of H(2)S on sepsis outcome, pretreatment with dl-propargylglycine (a CSE inhibitor) inhibited neutrophil migration to the infectious focus, enhanced lung lesions, and induced high mortality in mice subjected to nonsevere sepsis (from 0 to similar to 80%). The beneficial effects of H(2)S were blocked by glibenclamide (a ATP-dependent K(+) channel blocker). Conclusions: These results showed that H(2)S restores neutrophil migration to the infectious focus and improves survival outcome in severe sepsis by an ATP-dependent K(+) channel-dependent mechanism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The major stress response to critical illness leads to a catabolic state and loss of lean body mass. Aims: To test whether an increased rate of creatinine excretion might provide unique and timely information to monitor cell catabolism; to relate this information to balances of cell constituents (nitrogen, potassium, phosphate and magnesium); to evaluate the effectiveness of nutritional therapy to reverse this catabolic process. Design: Prospective observational study. Methods: Children with severe traumatic brain injury admitted to the paediatric critical care units of The Hospital for Sick Children, Toronto, Canada and Hospital das Clnicas, Faculty of Medicine of Ribeiro Preto, University of So Paulo, Brazil were studied. Complete 24 h urine collections were obtained for measurement of creatinine excretion rate and daily balances of nitrogen, potassium, phosphate and magnesium. Results: Seventeen patients were studied for 310 days. On Day 1, all had negative balances for protein and phosphate. Balances for these intracellular constituents became positive when protein intake was >= 1 g/kg/day and energy intake was >= 50% of estimated energy expenditure (P < 0.0001). Creatinine excretion rate was positively correlated with the urea appearance rate (r = 0.60; P < 0.0001), and negatively with protein balance (r = -0.45; P < 0.0001). Sepsis developed in four patients; before its clinical detection, there were negative balances for all intracellular markers and an abrupt rise in the excretion of creatinine. Conclusions: Negative balances of intracellular components and an increase in rate of creatinine excretion heralded the onset of catabolism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study describes increased sarcolemmal permeability and myofilamentar damage that occur together with lipid peroxidation and protein nitration in the myocardium in severe sepsis induced by cecal ligation and puncture. Male C57BL/6 mice were submitted to moderate and severe septic injury and sham operation. Using light and laser confocal microscopy, diffuse foci of myocytolysis associated with focal disruption of the actin/myosin contractile apparatus could be seen in hearts with severe septic injury. The myocardial expressions of the sarcomeric proteins myosin and actin were downregulated by both severe and moderate injuries. The detection of albumin staining in the cytoplasm of myocytes to evaluate sarcolemmal permeability provided evidence of severe and mild injury of the plasma membrane in hearts with severe and moderate septic injury, respectively. The administration of a superoxide scavenger caused marked reduction of sarcolemmal permeability, indicating the involvement of free radicals in its genesis. On electron microscopy, these changes were seen to correspond to spread blocks of a few myocytes with fragmentation and dissolution of myofibrils, intracellular edema, and, occasionally, rupture of the sarcolemma. In addition, oxidative damage to lipids, using anti-4-hydroxynonenal, an indicator of oxidative stress and disruption of plasma membrane lipids, and to proteins, using antinitrotyrosine, a stable biomarker of peroxynitrite-mediated protein nitration, was demonstrated. These findings make plausible the hypothesis that increased sarcolemmal permeability might be a primary event in myocardial injury in severe sepsis possibly due to oxidative damage to lipids and proteins that could precede phenotypic changes that characterize a septic cardiomyopathy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: Up-regulated matrix metalloproteinases may be involved in the development of cardiomyocyte injury and the degradation of troponin associated with acute pulmonary thromboembolism. We examined whether pretreatment with doxycycline (a nonspecific matrix metalloproteinase inhibitor) protects against cardiomyocyte injury associated with acute pulmonary thromboembolism. Design: Controlled animal study. Setting: University research laboratory. Subjects: Mongrel dogs. Interventions: Anesthetized animals received doxycycline (10 mg/kg intravenously) or saline and acute pulmonary thromboembolism was induced with autologous blood clots injected into the right atrium. Control animals received doxycycline (or saline). Measurements and Main Results: Hemodynamic measurements were performed, and acute pulmonary thromboembolism increased baseline mean pulmonary arterial pressure and pulmonary vascular resistance by approximately 160% and 362%, respectively (both p<.05), 120 mins after acute pulmonary thromboembolism. Pretreatment with doxycycline attenuated these increases (to 125% and 232%, respectively; both p<.05). Although acute pulmonary thromboembolism tended to increase the right ventricle maximum rate of isovolumic pressure development and the maximum rate of isovolumic pressure decay, doxycycline produced no effects on these parameters. Gelatin zymograms of right ventricle showed that acute pulmonary thromboembolism marginally increased matrix metalloproteinase-9 (but not matrix metalloproteinase-2) levels in the right ventricle. A fluorometric assay to assess net matrix metalloproteinase activities showed that acute pulmonary thromboembolism increased matrix metalloproteinase activities in the right ventricle by >100% (p<.05), and this finding was confirmed by in situ zymography of the right ventricle. Doxycycline attenuated acute pulmonary thromboembolism-induced increases in right ventricle matrix metalloproteinase activities. Acute pulmonary thromboembolism induced neutrophil accumulation in the right ventricle, as estimated by myeloperoxidase activity, and doxycycline blunted this effect (p<.05). Serum cardiac troponin I concentrations, which reflect cardiomyocyte injury, increased after acute pulmonary thromboembolism, and this increase was attenuated by pretreatment with doxycycline (p<.05). Conclusions: We found evidence supporting the idea that acute pulmonary thromboembolism is associated with increased matrix metalloproteinase activities in the right ventricle, which may lead to degradation of sarcomeric proteins, including cardiac troponin I. Inhibition of matrix metalloproteinases may be an effective therapeutic intervention in the management of acute pulmonary thromboembolism. (Crit Care Med 2011; 39: 349-356)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chryseobacteria are gram negative organisms, formerly known as Flavobacteria, which rarely cause infections of burn wounds. This article documents three casts of Chryseobacterium infection in burn wounds and adds to the other two cases that have been reported in English literature. Two patients died, with one of the deaths linked to a Chryseobacteria bacteraemia. In two patients, there was an associated history of first aid treatment with untreated water. Patients whose burn wounds are suspected to be infected with Chryseobacterium require wound excision and coverage in combination with antibiotic therapy such as ciprofloxacin, vancomycin and rifampicin. (C) 2001 Elsevier Science Ltd and ISBI. All rights reserved.