895 resultados para Cranial osteology
Resumo:
The African catfish Clarias gariepinus was used as a model for wound healing and tissue regeneration in a scale-less fish. A temporal framework of histological and cell proliferation markers was established after wound induction in the dorsolateral cranial region, by removing the epidermal and dermal layers, including stratum adiposum (SA). Wound closure and epidermis formation was initiated within 3 h post-procedure (hpp) with migration and concomitant proliferation of epidermal cells from the wound borders. The wound was covered by this primary epidermal front 12 hpp and fusion of the opposing epidermal fronts occurred within 24 hpp. Attachment of the newly formed epidermal layer to the underlying dermis was observed 48 hpp concomitant with a second wave of cell proliferation at the wound edge. Normal epidermal thickness within the wound was achieved 72 hpp. Formation of a basement membrane occurred by 120 hpp with concomitant emergence of the SA from the wound borders. Wound healing in C. gariepinus skin involved closure of the wound and re-epithelization through cell migration with a single wave of early cell proliferation not documented in other species. Furthermore, covering of the wound by epithelium as well as the reappearance of the basement membrane and SA occurred sooner than in other fish species. (C) 2008 The Authors Journal compilation (C) 2008 The Fisheries Society of the British Isles.
Resumo:
The tibial plateau leveling osteotomy (TPLO) is a relatively new and innovative surgical treatment for the cranial cruciate ligament rupture in the canine species. The real intent of the procedure is to provide functional stability to the stifle joint by eliminating or neutralizing the cranial tibial thrust during weight bearing instead to restore the cranial cruciate ligament function. The proposal of this study is to report a review of the TPLO procedure, emphasizing procedure, surgical technique, post operative care and complications. The TPLO procedure consists in a radial osteotomy in the tibial plato and rotation of the caudal plateau in order to obtain a desired angle, After the leveling of the tibial plateau, a bone plate and screws are used to stabilize the osteotomy until bone is healed up. The complications that have been associated with the procedure include tibial tuberosity fracture and patellar tendon tendinosis. This procedure has become increasingly more popular for surgical treatment of cranial cruciate ligament injuries in large breed dog. The long term clinical results have not been completely elucidated yet. It has been showed that this technique doesn`t halt the degenerative joint disease.
Resumo:
The morphological characteristics of the oviduct of 12 sexually mature rheas (Rhea americana) were studied. Only the left oviduct is developed as a long tube with a length of 122 +/- 23.1 cm, and is subdivided into infundibulum (15.2 +/- 4.0 cm), magnum (63.3 +/- 9.4 cm), isthmus (5.6 +/- 3.1 cm), uterus (16.0 +/- 4.2 cm) and vagina (11.5 +/- 1.4 cm). The mucous membrane of the oviduct, as a whole, possesses luminal folds covered by ciliated columnar epithelium with secretory cells. The infundibulum part presents a cranial opening with thin and long fimbriae with few tubular glands in caudal tubular portion. In the magnum, the largest portion of the oviduct, the folds are thicker and are filled with tubular glands. The isthmus is short and presents less bulky folds and a few tubular glands. A bag-shaped uterus in the cranial area shows thin folds, and in the caudal region (shell gland) more ramified folds with few tubular glands. The vagina has long luminal folds and a thick muscular tunic; no glands with sperm-storage characteristics have been observed. In conclusion, the oviduct in sexually mature rhea has morphological similarities with the other species of birds already described; however it presents its own characteristics to produce a big egg.
Resumo:
There are many techniques for the treatment of hip dysplasia, and novel research is currently being undertaken in the hope of obtaining more efficient and less traumatic techniques. The denervation of the hip joint capsule is a simple and effective technique that allows recovery of the functional activity of the affected limbs in significantly less time than other techniques. This surgical procedure consists of removing the acetabular periosteum, thus eliminating the nerve fibres with consequent analgesia. The aim of this investigation was to quantify the number of nerve fibres present in different regions of the acetabular periosteum. The knowledge of regional differences is potentially valuable for the refining of the denervation technique of the hip joint capsule. Thirty canine acetabular fragments were used to compare the nerve fibre density of the periosteum. The results showed a significant difference between the mean density of nerve fibres at the cranial and dorsal-lateral portion (approximately 75 fibres/mm(2)) and caudal lateral portion (approximately 60 fibres/mm(2)) of the acetabulum. Those fibres at the pedosteum are almost positioned in a sagittal plane, pointing towards the joint capsule, suggesting the some density in the latter region. These results indicate a new approach to the articular denervation technique, thus obtanining even better results for the treatment of hip dysplasia in dogs.
Resumo:
Undernutrition can cause important functional and morphological alterations in the hematopoietic bone marrow (HBM). Degeneration of the HBM in malnourished individuals has been observed in the long bones, but none has been described in the cranial bones. Mandibular condyle fracture can lead to determine nutritional effects due to the high catabolism needed for the bone healing added to the difficulties of mastication. The aim of this study is to describe the histological aspect of HBM in the fractured mandibular condyle and in the temporal bone of malnourished rats. Thirty adult rats suffered unilateral mandibular condyle fracture and were divided into well-nourished (FG) and malnourished (MG) groups. In the MG the animals received a hypoproteic diet during the experiment. Histological sections of the temporomandibular joint were stained to visualize and quantify the HBM in this region at 24h, and 7, 15, 30, and 90 days post-fracture. At 24 hours, FG and MG showed hypocellularity and ischemic degeneration in the mandibular condyle and in the temporal bone. At 7 days, FG exhibited high cellularity in comparison with MG in the condyle; the temporal bone of both groups presented hypocellularity and degeneration. At 30 and 90 days, FG exhibited similar characteristics to those of the control; MG maintained the degeneration level mainly in the temporal bone. Malnutrition prejudices the regeneration of the HBM during a fracture healing in the temporomandibular joint. This fact contributes to a complete modification of the bone structure as well as to an impairment of the healing process.
Resumo:
This article describes the case of a 67-year-old woman who presented with a typical left hemifacial spasm of 8-month duration. After 2 months, she experienced lacinating and sharp shock-like pain in the left side of her face affecting the V1 and V2 territories and a discrete attenuation of nauseous reflex on the left side. CT angiography and MRI revealed significant compression of left cranial nerves V, VII, VIII, IX and X by a giant and tortuous vertebro-basilar arterial complex. This case illustrates the nonlinearity of the relationship between the presence of the stressor factor and the actual manifestation of the disease.
Resumo:
The specification of the erythroid lineage from hematopoietic stem cells requires the expression and activity of lineage-specific transcription factors. One transcription factor family that has several members involved in hematopoiesis is the Kruppel-like factor (KLF) family [1]. For example, erythroid KLF (EKLF) regulates beta -globin expression during erythroid differentiation [2-6]. KLFs share a highly conserved zinc finger-based DNA binding domain (DBD) that mediates binding to CACCC-box and GC-rich sites, both of which are frequently found in the promoters of hematopoietic genes. Here, we identified a novel Xenopus KLF gene, neptune, which is highly expressed in the ventral blood island (VBI), cranial ganglia, and hatching and cement glands. neptune expression is induced in response to components of the BMP-4 signaling pathway in injected animal cap explants. Similar to its family member, EKLF, Neptune can bind CACCC-box and GC-rich DNA elements. We show that Neptune cooperates with the hematopoietic transcription factor XGATA-1 to enhance globin induction in animal cap explants. A fusion protein comprised of Neptune's DBD and the Drosophila engrailed repressor domain suppresses the induction of globin in ventral marginal zones and in animal caps. These studies demonstrate that Neptune is a positive regulator of primitive erythropoiesis in Xenopus.
Resumo:
Fibroblast growth factor receptor (FGFR) signalling is important in the initiation and regulation of osteogenesis. Although mutations in FGFR1, 2 and 3 genes are known to cause skeletal deformities, the expression of FGFR4 in bony tissue remains unclear. We have investigated the expression pattern of FGFR4 in the neonatal mouse calvaria and compared it to the expression pattern in cultures of primary osteoblasts. Immunohistochemistry demonstrated that FGFR4 was highly expressed in rudimentary membranous bone and strictly localised to the cellular components (osteoblasts) between the periosteal and endosteal layers. Cells in close proximity to the newly formed osteoid (preosteoblasts) also expressed FGFR4 on both the endosteal and periosteal surfaces. Immunocytochemical analysis of primary osteoblast cultures taken from the same cranial region also revealed high levels of FGFR4 expression, suggesting a similar pattern of cellular expression in vivo and in vitro. RT-PCR and Western blotting for FGFR4 confirmed its presence in primary osteoblast cultures. These results suggest that FGFR4 may be an important regulator of osteogenesis with involvement in preosteoblast proliferation and differentiation as well as osteoblast functioning during intramembranous ossification. The consistent expression of FGFR4 in vivo and in vitro supports the use of primary osteoblast cultures for elucidating the role of FGFR4 during osteogenesis.
Resumo:
Background: The aim of this study was to examine minor physical anomalies and quantitative measures of the head and face in patients with psychosis vs healthy controls. Methods: Based on a comprehensive prevalence study of psychosis, we recruited 310 individuals with psychosis and 303 controls. From this sample, we matched 180 case-control pairs for age and sex. Individual minor physical anomalies and quantitative measures related to head size and facial height and depth were compared within the matched pairs. Based on all subjects, we examined the specificity of the findings by comparing craniofacial summary scores in patients with nonaffective or affective psychosis and controls. Results: The odds of having a psychotic disorder were increased in those with wider skull bases (odds ratio [OR], 1.40; 95% confidence interval [CI], 1.02-1.17), smaller lower-facial heights (glabella to subnasal) (OR, 0.57; 95% CI, 0.44-0.75), protruding ears (OR, 1.72; 95% CI, 1.05-2.82), and shorter (OR, 2.29; 95% CI, 1.37-3.82) and wider (OR, 2.28; 95% CI, 1.43-3.65) palates. Compared with controls, those with psychotic disorder had skulls that were more brachycephalic. These differences were found to distinguish patients with nonaffective and affective psychoses from controls. Conclusions: Several of the features that differentiate patients from controls relate to the development of the neuro-basicranial complex and the adjacent temporal and frontal lobes. Future research should examine both the temporal lobe and the middle cranial fossa to reconcile our anthropomorphic findings and the literature showing smaller temporal lobes in patients with schizophrenia. Closer attention to the skull base may provide clues to the nature and timing of altered brain development in patients with psychosis.
Resumo:
Objective. This is an over-view of the cellular biology of upper nasal mucosal cells that have special characteristics that enable them to be used to diagnose and study congenital neurological diseases and to aid neural repair. Study Design: After mapping the distribution of neural cells in the upper nose, the authors' investigations moved to the use of olfactory neurones to diagnose neurological diseases of development, especially schizophrenia. Olfactory-ensheating glial cells (OEGs) from the cranial cavity promote axonal penetration of the central nervous system and aid spinal cord repair in rodents. The authors sought to isolate these cells from the more accessible upper nasal cavity in rats and in humans and prove they could likewise promote neural regeneration, making these cells suitable for human spinal repair investigations. Methods: The schizophrenia-diagnosis aspect of the study entailed the biopsy of the olfactory areas of 10 schizophrenic patients and 10 control subjects. The tissue samples were sliced and grown in culture medium. The ease of cell attachment to fibronectin (artificial epithelial basement membrane), as well as the mitotic and apoptotic indices, was studied in the presence and absence of dopamine in those cell cultures. The neural repair part of the study entailed a harvesting and insertion of first rat olfactory lamina propria rich in OEGs between cut ends of the spinal cords and then later the microinjection of an OEG-rich suspension into rat spinal cords previously transected by open laminectomy. Further studies were done in which OEG insertion was performed up to 1 month after rat cord transection and also in monkeys. Results: Schizophrenic patients' olfactory tissues do not easily attach to basement membrane compared with control subjects, adding evidence to the theory that cell wall anomalies are part of the schizophrenic lesion of neurones. Schizophrenic patient cell cultures had higher mitotic and apoptotic indices compared with control subjects. The addition of dopamine altered these indices enough to allow accurate differentiation of schizophrenics from control patients, leading to, possibly for the first time, an early objective diagnosis of schizophrenia and possible assessment of preventive strategies. OEGs from the nose were shown to be as effective as those from the olfactory bulb in promoting axonal growth across transected spinal cords even when added I month after injury in the rat. These otherwise paraplegic rats grew motor and proprioceptive and fine touch fibers with corresponding behavioral improvement. Conclusions. The tissues of the olfactory mucosa are readily available to the otolaryngologist. Being surface cells, they must regenerate (called neurogenesis). Biopsy of this area and amplification of cells in culture gives the scientist a window to the developing brain, including early diagnosis of schizophrenia. The Holy Grail of neurological disease is the cure of traumatic paraplegia and OEGs from the nose promote that repair. The otolaryngologist may become the necessary partner of the neurophysiologist and spinal surgeon to take the laboratory potential of paraplegic cure into the day-to-day realm of clinical reality.
Resumo:
The present study employs choline acetyltransferase (ChAT) immunohistochemistry to identify the cholinergic neuronal population in the central nervous system of the monotremes. Two of the three extant species of monotreme were studied: the platypus (Omithorhynchus anatinus) and the short-beaked echidna (Tachyglossus aculeatus). The distribution of cholinergic cells in the brain of these two species was virtually identical. Distinct groups of cholinergic cells were observed in the striatum, basal forebrain, habenula, pontomesencephalon, cranial nerve motor nuclei, and spinal cord. In contrast to other tetrapods studied with this technique, we failed to find evidence for cholinergic cells in the hypothalamus, the parabigeminal nucleus (or nucleus isthmus), or the cerebral cortex. The lack of hypothalamic cholinergic neurons creates a hiatus in the continuous antero-posterior aggregation of cholinergic neurons seen in other tetrapods. This hiatus might be functionally related to the phenomenology of monotreme sleep and to the ontogeny of sleep in mammals, as juvenile placental mammals exhibit a similar combination of sleep elements to that found in adult monotremes. Copyright (C) 2002 S. Karger AG, Basel.
Resumo:
This study describes the derivation of two new lines of transgenic mice that express Cre recombinase under the control of tyrosinase transcriptional elements. To determine the suitability of the Tyrosinase-Cre transgene for tissue-specific gene ablation studies, a fate map of Cre expression domains was determined using the Z/AP reporter strain. It was shown that Cre-expressing cells contribute to a wide array of neural crest and neuroepithelial-derived lineages. The melanocytes of the harderian gland and eye choroid, sympathetic cephalic ganglia, leptomeninges of the telencephalon, as well as cranial nerves (V), (VII), and (IX) are derived either fully or partly from Cre-expressing cephalic crest. The cells contributing to the cranial nerves were the first to exhibit Cre expression at E10.5 as they were migrating into the branchial arches. The melanocytes, chromaffin cells of the adrenal medulla, and dorsal root ganglia are derived from trunk neural crest that either express Cre or were derived from Cre-expressing precursors. An array of brain tissue including the basal forebrain, hippocampus, olfactory bulb, and the granule cell layer of the lateral cerebellum, as well as the retinal pigmented epithelium and glia of the optic nerve originate from Cre-expressing neuroepithelial cells. (C) 2003 Wiley-Liss, Inc.
Resumo:
This paper documents the successful development of an artificial insemination (AI) programme for the Koala Phascolurctos cinereus. The protocols for trials involving two methods to induce ovulation and two insemination techniques are described. In Trial 1, interrupted coitus using a 'teaser'♂ successfully induced ovulation in nine Koalas. Five ♀♀ were inseminated while conscious using a modified 'foley catheter' (Cook insemination catheter) resulting in the births of two offspring. The other four ♀♀ were anaesthetized and inseminated using a technique which allowed visualization of the most cranial portion of the urogenital sinus, where semen was deposited using a 3.5 Fr. 'Tom-cat catheter' (urogen-itoscopic insemination). Three of the four ♀♀ inseminated by this technique produced pouch young. Microsatellite analysis of DNA from the pouch young excluded the teaser ♀♀ as possible sires, confirming that all offspring were sired by donor sperm. In Trial 2, eight ♀♀ were induced to ovulate by injecting them with 250 International Units of human chorionic gonadotrophin (hCG). A luteal phase was confirmed in all eight ♀♀ but only one gave birth following urogenitoscopic insemination. The Koala pouch young in this study are the first of any marsupial to be conceived and born following A1 procedures. Details of the A1 procedures used are presented and the significance of A1 to the conservation biology of P. cinereus discussed.
Resumo:
The aim of this study was to evaluate the response to the implantation of synthetic hydroxyapatite 30% (HAP-91®) in different physical states as dermal filler. Eighteen New Zealand rabbits were used, distributed randomly into two equal groups and then divided into three groups according to the postoperative period at 8, 21 and 49 days. One mL of HAP-91®, fluid and viscous, was implanted in the subcutaneous tissue, 1 cm proximal to the cranial crest of the right scapula. The thickness of the skin was measured before and after implantation and for the following 15 days. Pain sensitivity assessment was conducted, assigning the following scores: 0 - when the animal allowed the touch of the implant area and expressed no signs of pain; 1 - when the animal allowed the touch, but pain reaction occurred, like increase of the respiratory rate or attempt to escape; 2 - when the animal did not allow the touch to the implanted area. At 8, 21 and 49 days, biopsy of the implanted area was performed. No difference was observed between the thickness of the skin (p>0.05) and all animals received a score 0 for soreness. Histological analysis did not reveal any obvious inflammatory process, showing a predominance of mononuclear cells in samples of eight days and tissue organization around the biomaterial with a tendency to encapsulation. The results indicate that HAP-91®, both viscous and fluid, is biocompatible and suitable for dermal filling.
Resumo:
Mestrado em Fisioterapia