998 resultados para Crabwood and Amazonia
Resumo:
Under field conditions in the Amazon forest, soil bulk density is difficult to measure. Rigorous methodological criteria must be applied to obtain reliable inventories of C stocks and soil nutrients, making this process expensive and sometimes unfeasible. This study aimed to generate models to estimate soil bulk density based on parameters that can be easily and reliably measured in the field and that are available in many soil-related inventories. Stepwise regression models to predict bulk density were developed using data on soil C content, clay content and pH in water from 140 permanent plots in terra firme (upland) forests near Manaus, Amazonas State, Brazil. The model results were interpreted according to the coefficient of determination (R2) and Akaike information criterion (AIC) and were validated with a dataset consisting of 125 plots different from those used to generate the models. The model with best performance in estimating soil bulk density under the conditions of this study included clay content and pH in water as independent variables and had R2 = 0.73 and AIC = -250.29. The performance of this model for predicting soil density was compared with that of models from the literature. The results showed that the locally calibrated equation was the most accurate for estimating soil bulk density for upland forests in the Manaus region.
Resumo:
Ipomoea asarifolia (Desr.) Roem. & Schultz (Convolvulaceae) and Stachytarpheta cayennensis (Rich) Vahl. (Verbenaceae), two weeds found in pastures and crop areas in Brazilian Amazonia, were grown in controlled environment cabinets under high (800-1000 µmol m-² s-¹) and low (200-350 µmol m-² s-¹) light regimes during a 40-day period. For both species leaf dry mass and leaf area per total plant dry mass, and leaf area per leaf dry mass were higher for low-light plants, whereas root mass per total plant dry mass was higher for high-light plants. High-light S. cayennensis allocated significantly more biomass to reproductive tissue than low-light plants, suggesting a probably lower ability of this species to maintain itself under shaded conditions. Relative growth rate (RGR) in I. asarifolia was initially higher for high-light grown plants and after 20 days started decreasing, becoming similar to low-light plants at the last two harvests (at 30 and 40 days). In S. cayennensis, RGR was also higher for high-light plants; however, this trend was not significant at the first and last harvest dates (10 and 40 days). These results are discussed in relation to their ecological and weed management implications.
Resumo:
Ipomoea asarifolia (Desr.) Roem. & Schultz (Convolvulaceae) and Stachytarpheta cayennensis (Rich) Vahl. (Verbenaceae), two weeds found in pastures and crop areas in the Brazilian Amazonia, Brazil, were grown in controlled environment cabinets under high (800-1000 µmol m-² s-¹) and low (200-350 µmol m-² s-¹) light regimes during a 40-day period. The objective was to determine the effect of shade on photosynthetic features and leaf nitrogen content of I. asarifolia and S. cayennensis. High-irradiance grown I. asarifolia leaves had significantly higher dark respiration and light saturated rates of photosynthesis than low-irradiance leaves. No significant differences for these traits, between treatments, were observed in S. cayennensis. Low-irradiance leaves of both species displayed higher CO2 assimilation rates under low irradiance. High-irradiance grown leaves of both species had less nitrogen per unit of weight. Low-irradiance S. cayennensis had more nitrogen per unit of leaf area than high-irradiance plants; however, I. asarifolia showed no consistent pattern for this variable through time. For S. cayennensis, leaf nitrogen content and CO2 assimilation were inversely correlated to the amount of biomass allocated to developing reproductive structures. These results are discussed in relation to their ecological and weed management implications.
Resumo:
In Amazonia, topographical variations in soil and forest structure within "terra-firme" ecosystems are important factors correlated with terrestrial invertebrates' distribution. The objective of this work was to assess the effects of soil clay content and slope on ant species distribution over a 25 km² grid covering the natural topographic continuum. Using three complementary sampling methods (sardine baits, pitfall traps and litter samples extracted in Winkler sacks), 300 subsamples of each method were taken in 30 plots distributed over a wet tropical forest in the Ducke Reserve (Manaus, AM, Brazil). An amount of 26,814 individuals from 11 subfamilies, 54 genera, 85 species and 152 morphospecies was recorded (Pheidole represented 37% of all morphospecies). The genus Eurhopalothrix was registered for the first time for the reserve. Species number was not correlated with slope or clay content, except for the species sampled from litter. However, the Principal Coordinate Analysis indicated that the main pattern of species composition from pitfall and litter samples was related to clay content. Almost half of the species were found only in valleys or only on plateaus, which suggests that most of them are habitat specialists. In Central Amazonia, soil texture is usually correlated with vegetation structure and moisture content, creating different microhabitats, which probably account for the observed differences in ant community structure.
Resumo:
The objective of this work was to evaluate an inventory method efficiency for ants. We used subsamples collected in 24 transects of 100 m, distributed in 6 plots of 600 ha each in primary forest, as part of a long-term project. Ten litter subsamples were extracted per transect using Winkler extractors. Ants were identified to genus level, and Crematogaster, Gnamptogenys and Pachycondyla genera to species/morphospecies level. To evaluate the consequences of reduced sampling on the retention of ecological information, we estimated the lowest number of subsamples needed to detect the effects of environmental variables. Multidimensional scaling (MDS) was used to generate dissimilarity matrices, and Mantel correlations between each reduced-sampling effort and maximum effort were used as an index of how much information was maintained and could still be used in multivariate analyses. Lower p-values was observed on the effect of soil pH in the community of genera, and on the effect of the litter volume for the community of Crematogaster. The trend was still detectable in the analysis based on reduced-sampling. The number of subsamples can be reduced, and the cost-efficiency of the protocol can be improved with little loss of information.
Resumo:
The aim of this work was to evaluate whether terrestrial model ecosystems (TMEs) are a useful tool for the study of the effects of litter quality, soil invertebrates and mineral fertilizer on litter decomposition and plant growth under controlled conditions in the tropics. Forty-eight intact soil cores (17.5-cm diameter, 30-cm length) were taken out from an abandoned rubber plantation on Ferralsol soil (Latossolo Amarelo) in Central Amazonia, Brazil, and kept at 28ºC in the laboratory during four months. Leaf litter of either Hevea pauciflora (rubber tree), Flemingia macrophylla (a shrubby legume) or Brachiaria decumbens (a pasture grass) was put on top of each TME. Five specimens of either Pontoscolex corethrurus or Eisenia fetida (earthworms), Porcellionides pruinosus or Circoniscus ornatus (woodlice), and Trigoniulus corallinus (millipedes) were then added to the TMEs. Leaf litter type significantly affected litter consumption, soil microbial biomass and nitrate concentration in the leachate of all TMEs, but had no measurable effect on the shoot biomass of rice seedlings planted in top soil taken from the TMEs. Feeding rates measured with bait lamina were significantly higher in TMEs with the earthworm P. corethrurus and the woodlouse C. ornatus. TMEs are an appropriate tool to assess trophic interactions in tropical soil ecossistems under controlled laboratory conditions.
Resumo:
The objective of this work was to evaluate the catabolic gene diversity for the bacterial degradation of aromatic hydrocarbons in anthropogenic dark earth of Amazonia (ADE) and their biochar (BC). Functional diversity analyses in ADE soils can provide information on how adaptive microorganisms may influence the fertility of soils and what is their involvement in biogeochemical cycles. For this, clone libraries containing the gene encoding for the alpha subunit of aromatic ring-hydroxylating dioxygenases (α-ARHD bacterial gene) were constructed, totaling 800 clones. These libraries were prepared from samples of an ADE soil under two different land uses, located at the Caldeirão Experimental Station - secondary forest (SF) and agriculture (AG) -, and the biochar (SF_BC and AG_BC, respectively). Heterogeneity estimates indicated greater diversity in BC libraries; and Venn diagrams showed more unique operational protein clusters (OPC) in the SF_BC library than the ADE soil, which indicates that specific metabolic processes may occur in biochar. Phylogenetic analysis showed unidentified dioxygenases in ADE soils. Libraries containing functional gene encoding for the alpha subunit of the aromatic ring-hydroxylating dioxygenases (ARHD) gene from biochar show higher diversity indices than those of ADE under secondary forest and agriculture.
Resumo:
The objective of this work was to characterize the morphology and molecular composition of the hydrochar produced by microwave-assisted hydrothermal carbonization of cellulose. The produced hydrochar consists mainly of aggregate microspheres with about 2.0 µm in diameter, with aliphatic and aromatic structures and the presence of carbonyl functional groups. The aromatic groups are formed mainly by benzofuran-like structures, being chemically different from common cellulose char. Microwave-assisted hydrothermal carbonization yields a functionalized carbon-rich material similar to that produced by the conventional hydrothermal process.
Resumo:
This thesis includes detailed sedimentological and ichnological studies on two geological units: the Pebas Formation, with a special focus in its informal upper member, and the Nauta Formation. Both formations were deposited during the Miocene in Northeastern Peruvian Amazonia, in the Amazon retroarc foreland basin. The Pebas and Nauta successions mainly consist of non-consolidated, clastic sedimentary deposits arranged into sand- to mud-dominated heterolithic successions, which can be upward-coarsening to upward-fining. Sediments in both the Pebas and Nauta successions range from mud to fine- to medium-grained sand. The main facies observed were 1) mud-dominated horizontal heterolithic couplets; 2) rooted brownish mud; 3) lenticular, mud-draped, cross-stratified sand; 4) mud- to sand-dominated, inclined heterolithic stratification; 5) sand-dominated horizontal heterolithic couplets; and 6) mud-draped, trough cross-stratified sand. Locally, tidal rhythmites were documented. The facies are interpreted as: 1) muddy, shallow, subaqueous flats/shoals; 2) palaeosols; 3) secondary tidal channels or run-off creeks; 4) tidally influenced point bars; 5) shoreface deposits; and 6) subtidal compound dunes. Thalassinoides-dominated Glossifungites ichnofacies, low-diversity expressions of the Skolithos ichnofacies and depauperate suites consisting of elements common to the Cruziana ichnofacies strongly indicate brackish-water conditions. However, continental trace fossil assemblages, with possible elements common to the Scoyenia ichnofacies, have also been identified. In addition to the palaeoenvironmental study, a local hydrogeochemical characterisation of the Pebas and Nauta formations was also conducted. The geochemistry of the groundwaters reflects the characteristics and the soil geochemistry of the geological formations studied. The Pebas formation has low hardness, acid to neutral waters, whereas the upper Pebas has high hardness, acid to neutral waters. In both units, the arsenic content is locally high. The Nauta formation has low hardness acid groundwaters. A regional review of the Pebas and Nauta formations placed the local observations into a continental perspective and suggests that the whole Pebas-Nauta system was a probably shallow (some tens of metres at maximum), brackish- to freshwater, tidally-influenced epicontinental embayment with a probable semi-diurnal to mixed tidal regime and a microtidal range, surrounded by continental environments such as forest floors, lagoons, rivers and their flood plains, and lakes.
Resumo:
The present study provides the first epidemiological data regarding infection by Anaplasma marginale in cattle reared in south-western Brazilian Amazonia. One simple procedure was adapted for the extraction of DNA from blood clots collected in seven microregions of Rondônia State and two mesoregions of Acre State. PCR method was used to asses the frequency of A. marginale infections in 4 to12-month-old cattle. The cattle infection was investigated by polymerase chain reaction (PCR) using the specific primer "msp5" for A. marginale. The DNA amplifications revealed that the mean frequency of A. marginale infection was 98.6% (1,627/1,650) in samples from Rondonia, and 92.87% (208/225) in samples from Acre. The high frequency of A. marginale infections in 4 to 12-month-old cattle indicate a situation of enzootic stability in the studied areas and are comparable to those detected by immunodiagnosis in different endemic regions in Brazil. The DNA extraction of clotted blood method described here can be used for epidemiological studies on anaplasmosis and other bovine hemoparasites.
Resumo:
The potential for seed bank formation of two perennial weed species, Ipomoea asarifolia (Desr.) Roem. & Schult. (Convolvulaceae) and Stachytarpheta cayennensis (Rich.) M. Vahl (Verbenaceae), both common in Amazonia , was evaluated in a degraded pasture area in eastern Brazilian Amazonia . Seeds were enclosed in nylon mesh packets and placed at the soil surface or buried at 5 or 10 cm deep. The number of viable seeds was recorded at 6, 10, 14 and 18 months after burial. Results showed that S. cayennensis has the ability to form persistent soil seed bank, while I. asarifolia seeds do not build up in the soil seed bank. For S. cayennensis and, to some extent, for I. asarifolia, seed survival was highest at greater burial depths.
Resumo:
The effects of shade on growth, biomass allocation patterns and photosynthetic response was examined for Rolandra fruticosa (L.) Kuntze, a common perennial weed shrub in cultivated pastures and agricultural areas of Brazilian Amazonia, for plants grown in full sunlight and those shaded to 30 % of full sunlight over a 34-d period. Specific leaf area and leaf area ratio were higher for shade plants during all the experimental period. Shade plants allocated significantly less biomass to root tissue than sun plants and relative growth rate was higher in sun plants. Sun leaves had significantly higher dark respiration and light saturated rates of photosynthesis than shade leaves. The apparent quantum efficiency was higher for shade leaves, while light compensation point was higher for sun leaves. These results are discussed in relation to their ecological and weed management implications.
Resumo:
The mechanisms that maintain tree diversity in tropical rain forests are still in debate. Variations in forest structural components produce forest microenvironmental heterogeneity, which in turn may affect plant performance and have been scarcely analyzed in the Amazon. Palms are widespread in the Neotropical rainforests and have relatively well known taxonomy, apart from being ecologically and economically important. The understanding of how palms respond to variation in the forest structural components may help to explain their abundance and richness in a given area. In this study, we describe a palm community and analyze how it is affected by forest microenvironmental heterogeneity. In a pristine "Terra Firme" forest at Reserva Ducke, Manaus, we recorded all adult palm trees in twenty 100 × 10 m plots. In the same plots we recorded the variation in canopy openness, the leaflitter thickness and counted all non-palm forest trees. A total of 713 individuals in 29 palm species were found. The three most abundant species were Astrocaryum sciophilum (Miq.) Pulle, A. gynacanthum Mart. and Attalea attaleoides (Barb. Rodr.) Wess. Boer. The most locally abundant species were also very frequent or occurred in a larger number of plots. There were no significant effects of litter depth, forest canopy openness and forest tree abundance on palm richness. However, in areas where leaf litter was thicker a significant lower number of palm trees occurred. In microsites where proportionally more incident light was reaching the forest understory, due to higher canopy opening, significantly more palm trees were present.
Resumo:
The population structure of a common canopy tree was examined in three sites to investigate the possible effects of forest fragmentation in eastern Amazonia. Evidence for the escape hypothesis of differential seed/seedling survival was evaluated. Two 1 ha plots were established at each site and all individuals of Eschweilera coriacea (DC.) S. A. Mori over 1 m tall were tagged, measured and mapped. Smaller individuals were recorded in the same way within subplots. Mature individuals were abundant at all sites with densities of 32-52 ha-1. The species exhibited substantial regeneration, although total population density varied fourfold among sites (1,256-4,805 individuals ha-1). Overall, juveniles were clumped while adults were randomly distributed. The difference between the dispersion pattern of adults and juveniles supported the escape hypothesis. However, no difference in population structure among sites could be related to the forest fragmentation.
Resumo:
The along-scan radiometric gradient causes severe interpretation problems in Landsat images of tropical forests. It creates a decreasing trend in pixel values with the column number of the image. In practical applications it has been corrected assuming the trend to be linear within structurally similar forests. This has improved the relation between floristic and remote sensing information, but just in some cases. I use 3 Landsat images and 105 floristic inventories to test the assumption of linearity, and to examine how the gradient and linear corrections affect the relation between floristic and Landsat data. Results suggest the gradient to be linear in infrared bands. Also, the relation between floristic and Landsat data could be conditioned by the distribution of the sampling sites and the direction in which images are mosaicked. Additionally, there seems to be a conjunction between the radiometric gradient and a natural east-west vegetation gradient common in Western Amazonia. This conjunction might have enhanced artificially correlations between field and remotely-sensed information in previous studies. Linear corrections may remove such artificial enhancement, but along with true and relevant spectral information about floristic patterns, because they can´t separate the radiometric gradient from a natural one.