936 resultados para Counting on underwater photo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recordings from the PerenniAL Acoustic Observatory in the Antarctic ocean (PALAOA) show seasonal acoustic presence of 4 Antarctic ice-breeding seal species (Ross seal, Ommatophoca rossii, Weddell seal, Leptonychotes weddellii, crabeater, Lobodon carcinophaga, and leopard seal, Hydrurga leptonyx). Apart from Weddell seals, inhabiting the fast-ice in Atka Bay, the other three (pack-ice) species however have to date never (Ross and leopard seal) or only very rarely (crabeater seals) been sighted in the Atka Bay region. The aim of the PASATA project is twofold: the large passive acoustic hydrophone array (hereafter referred to as large array) aims to localize calling pack-ice pinniped species to obtain information on their location and hence the ice habitat they occupy. This large array consists of four autonomous passive acoustic recorders with a hydrophone sensor deployed through a drilled hole in the sea ice. The PASATA recordings are time-stamped and can therefore be coupled to the PALAOA recordings so that the hydrophone array spans the bay almost entirely from east to west. The second, smaller hydrophone array (hereafter referred to as small array), also consists of four autonomous passive acoustic recorders with hydrophone sensors deployed through drilled holes in the sea ice. The smaller array was deployed within a Weddell seal breeding colony, located further south in the bay, just off the ice shelf. Male Weddell seals are thought to defend underwater territories around or near tide cracks and breathing holes used by females. Vocal activity increases strongly during the breeding season and vocalizations are thought to be used underwater by males for the purpose of territorial defense and advertisement. With the smaller hydrophone array we aim to investigate underwater behaviour of vocalizing male and female Weddell seals to provide further information on underwater movement patterns in relation to the location of tide cracks and breathing holes. As a pilot project, one on-ice and three underwater camera systems have been deployed near breathing holes to obtain additional visual information on Weddell seal behavioural activity. Upon each visit in the breeding colony, a census of colony composition on the ice (number of animals, sex, presence of dependent pups, presence and severity of injuries-indicative of competition intensity) as well as GPS readings of breathing holes and positions of hauled out Weddell seals are taken.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The endemic Canary Island pine (Pinus canariensis) has an effective strategy to counteract fire disturbance in the short term. It has a mixed strategy that combines the presence of serotinous cones and thick barks with the ability to re-sprout from the trunk after a fire, a rare trait in pine species. High frequency of fires in the Canary Islands is related to human action, as natural fires by lightning or vulcan activity have very low frequency; hence, the how and whys of the presence of serotinous cones in the species is still a topic of debate. Previous studies showed that the frequency of serotinous cones varies from stand to stand. Here, we analyzed the presence of serotinous cones at a local scale. We selected a Canary Island pine stand in the transition zone between dry and humid forests in the south of Tenerife. Branches were pruned from 20 trees in order to evaluate the presence of serotinous vs. non-serotinous cones by direct verticile counting on the branches. The opening temperature of serotinous cones was assessed in the laboratory. Percentages of serotinous vs. non-serotinous cones varied from 0 to 93 %, showing high variability between trees. Opening temperatures were very high (above 65 ºC) as compared to other Mediterranean pine species with serotinous cones

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Date of acceptance: 06/12/2014 Acknowledgments The study was funded by the Portuguese Ministry of Science (Fundac¸a˜o para a Cieˆncia e Tecnologia– FCT) through a PhD Grant of SG (SFRH/BD/47931/2008). We would like to thank the captain of the purse-seiner (Jose´ Manuel Saveedra) and his crew for facilitating the capture and transport of live fish. Moreover, we want to thank Ana Marc¸alo for suggestions on the experimental design, Manuel Garci for technical advice on underwater video recordings and James Turner from the company Future Oceans for providing technical details on the 70 kHz dolphin pingers. We would also like to acknowledge the scientific advice of Dr. Jose´ Iglesias and the technical and logistic support for the preparation of the laboratory and the materials for tank experiments by Enrique Martı´nez Gonza´lez, Ricardo Pazo´and other staff at the aquaculture facilities of the Spanish Institute for Oceanography (IEO) and the Marine Sciences Station of Toralla (ECIMAT) in Vigo. Furthermore, we are grateful to Francisco de la Granda Grandoso for his practical assistance during the fish tank experiments and to Juan Santos Blanco for helping with statistical analysis. Finally, we would like to thank Pilar Riobo´ Agula, Amelia Fernandez Villamarin, Jose´ Franco Soler, Jose´ Luis Mun˜oz, Angela Benedetti, Marcos Antonio Lopez Patin˜o and Marta Conde Sieira for scientific advice and practical support with cortisol analysis and Rosana Rodrı´guez for preparing histological samples for us.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L-R: Jack Campbell, Nico Wiese, ?, Dick Kimball, Tom Taylor, Ed Gagnier,? (IDs tentative based on 1956 photo)