996 resultados para Construction Vehicles.
Resumo:
The Australian Construction Industry Forum (which is a peak industry association) and the Australian Procurement and Construction Council (which is a peak government organisation) have jointly agreed on a set of KPIs for the Australian Construction Industry. The goal of such a process is to work collaboratively in order to lift industry performance overall, and thereby bring about economic and social benefits to the industry and broader community. This paper seeks to underpin the process of KPI measurement by providing: an overview of international approaches to KPI measurement, summary of difficulties identified in performance measurement together with possible responses to these problems, and finally a discussion on the various methods for reporting KPIs. A number of findings throughout the paper, based on the review, made in order to advance the goal of performance measurement in the construction industry in Australia. Such findings would be relevant to other countries considering a KPI measurement process as well.
Resumo:
The problem of delays in the construction industry is a global phenomenon and the construction industry in Brunei Darussalam is no exception. The goal of all parties involved in construction projects – owners, contractors, engineers and consultants in either the public or private sector is to successfully complete the project on schedule, within planned budget, with the highest quality and in the safest manner. Construction projects are frequently influenced by either success factors that help project parties reach their goal as planned, or delay factors that stifle or postpone project completion. The purpose of this research is to identify success and delay factors which can help project parties reach their intended goals with greater efficiency. This research extracted seven of the most important success factors according to the literature and seven of the most important delay factors identified by project parties, and then examined correlations between them to determine which were the most influential in preventing project delays. This research uses a comprehensive literature review to design and conduct a survey to investigate success and delay factors and then obtain a consensus of expert opinion using the Delphi methodology to rank the most needed critical success factors for Brunei construction projects. A specific survey was distributed to owners, contractors and engineers to examine the most critical delay factors. A general survey was distributed to examine the correlation between the identified delay factors and the seven most important critical success factors selected. A consensus of expert opinion using the Delphi methodology was used to rank the most needed critical success factors for Brunei building construction. Data was collected and evaluated by statistical methods to identify the most significant causes of delay and to measure the strength and direction of the relationship between critical success factors and delay factors in order to examine project parties’ evaluation of projects’ critical success and delay factors, and to evaluate the influence of critical success factors on critical delay factors. A relative importance index has been used to determine the relative importance of the various causes of delays. A one and two-way analysis of variance (ANOVA) has been used to examine how the group or groups evaluated the influence of the critical success factors in avoiding or preventing each of the delay factors, and which success factors were perceived as most influential in avoiding or preventing critical delay factors. Finally the Delphi method, using consensus from an expert panel, was employed to identify the seven most critical success factors used to avoid the delay factors, and thereby improve project performance.
Resumo:
This paper reports on the development of specifications for an on-board mass monitoring (OBM) application for regulatory requirements in Australia. An earlier paper reported on feasibility study and pilot testing program prior to the specification development [1]. Learnings from the pilot were used to refine this testing process and a full scale testing program was conducted from July to October 2008. The results from the full scale test and evidentiary implications are presented in this report. The draft specification for an evidentiary on-board mass monitoring application is currently under development.
Resumo:
The study of the creative industries is not much more than a decade old. What makes it fascinating is that it is dealing with a rapidly evolving process, where a good deal of Schumpeterian ‘creative destruction’ – of old industries, business models, and some familiar cultural and creative pursuits – can already be observed. What happens next – and who will be the winner – is hard to predict. Furthermore, the creative industries encompass both large-scale ‘industry’ (media, publishing, digital applications) and individual creative talent; both economic and cultural values, and both global reach and local context. Thus, the challenge is to integrate ‘top-down’ policy and planning with ‘bottom-up’ experimentation and innovation. There is always the promise that this new creative ecology will provide some novel answers to problems of wealth-creation for emergent economies, new solutions to problems of intellectual emancipation for individuals, and sustainable development for that most intense incubator of creative ideas, the city.
Resumo:
Ecological sustainable development (ESD), defined as that which meets the needs of the present without compromising the ability of future generations to meet their own needs, has much to offer in enhancing the quality of life of people and maintaining the environment for future generations by reducing the pollution of water, air and land, minimizing the destruction of irreplaceable ecosystems and cutting down the amount of toxic materials released. However, there is still much to do to achieve full implementation world-wide. This paper reports on three factors-design, attitudes and financial constraints - that are likely barriers to the implementation of ESD within the built environment in Australian industry. A postal questionnaire survey is described aimed at soliciting views on detailed aspects of the factors. This shows that ESD in the Australian built environment has also not been successfully implemented. The main reason is found to be due to the perceived costs involved - the cost of using environmental materials being a predominant factor. The design of ESD, being more sophisticated, also is perceived as involving stakeholders in more expense. There also appears to be a lack of knowledge and a lack of specialised and interdisciplinary design teams available in the Australian context.
Resumo:
Expenditure on R&D in the China construction industry has been relatively low in comparison with many developed countries for a number of years – a situation considered to be a major barrier to the industry’s competitiveness in general and unsatisfactory industry development of the 31 regions involved. A major problem with this is the lack of a sufficiently sophisticated method of objectively evaluating R&D activity in what are quite complex circumstances considering the size and regional differences that exist in this part of the world. A regional construction R&D evaluation system (RCRES) is presented aimed at rectifying the situation. This is based on 12 indicators drawn from the Chinese Government’s R&D Inventory of Resources in consultation with a small group of experts in the field, and further factor analysed into three groups. From this, the required evaluation is obtained by a simple formula. Examination of the results provides a ranking list of the R&D performance of each of the 31 regions, indicating a general disproportion between coastal and inland regions and highlighting regions receiving special emphasis or currently lacking in development. The understanding on this is vital for the future of China’s construction industry.
Resumo:
It is recognized that, in general, the performance of construction projects does not meet optimal expectations. One aspect of this is the performance of each participant, which is interdependent and makes a significance impact on overall project outcomes. Of these, the client is traditionally the owner of the project, the architect or engineer is engaged as the lead designer and a contractor is selected to construct the facilities. Generally, the performance of the participants is gauged by considering three main factors, namely time, cost and quality. As the level of satisfaction is a subjective measurement, it is rarely used in the performance evaluation of construction work. Recently, various approaches to the measurement of satisfaction have been made in attempting to determine the performance of construction project outcomes – for instance client satisfaction, consultant satisfaction, contractor satisfaction, customer satisfaction and home buyer satisfaction. These not only identify the performance of the construction project, but are also used to improve and maintain relationships. In addition, these assessments are necessary for continuous improvement and enhanced cooperation between participants. The measurement of satisfaction levels primarily involves expectations and perceptions. An expectation can be regarded as a comparison standard of different needs, motives and beliefs, while a perception is a subjective interpretation that is influenced by moods, experiences and values. This suggests that the disparity between perceptions and expectations may be used to represent different levels of satisfaction. However, this concept is rather new and in need of further investigation. This paper examines the current methods commonly practiced in measuring satisfaction level and the advantages of promoting these methods. The results provided are a preliminary review of the advantages of satisfaction measurement in the construction industry and recommendations are made concerning the most appropriate methods for use in identifying the performance of project outcomes.
Resumo:
Thin bed technology for clay/ concrete masonry is gaining popularity in many parts of the developed economy in recent times through active engagement of the industry with the academia. One of the main drivers for the development of thin bed technology is the progressive contraction of the professional brick and block laying workforce as the younger generation is not attracted towards this profession due to the general perception of the society towards manual work as being outdated in the modern digital economy. This situation has led to soaring cost of skilled labour associated with the general delay in completion of construction activities in recent times. In parallel, the advent of manufacturing technologies in producing bricks and blocks with adherence to specified dimensions and shapes and several rapid setting binders are other factors that have contributed to the development of thin bed technology. Although this technology is still emerging, especially for applications to earthquake prone regions, field applications are reported in Germany for over a few decades and in Italy since early 2000. The Australian concrete masonry industry has recently taken keen interest in pursuing research with a view to developing this technology. This paper presents the background information including review of literature and pilot studies that have been carried out to enable planning of the development of thin bed technology. The paper concludes with recommendations for future research.
Resumo:
Interacting with technology within a vehicle environment using a voice interface can greatly reduce the effects of driver distraction. Most current approaches to this problem only utilise the audio signal, making them susceptible to acoustic noise. An obvious approach to circumvent this is to use the visual modality in addition. However, capturing, storing and distributing audio-visual data in a vehicle environment is very costly and difficult. One current dataset available for such research is the AVICAR [1] database. Unfortunately this database is largely unusable due to timing mismatch between the two streams and in addition, no protocol is available. We have overcome this problem by re-synchronising the streams on the phone-number portion of the dataset and established a protocol for further research. This paper presents the first audio-visual results on this dataset for speaker-independent speech recognition. We hope this will serve as a catalyst for future research in this area.
Resumo:
If the trade union movement is to remain an influential force in the industrial, economic and socio/political arenas of industrialised nations it is vital that its recruitment of young members improve dramatically. Australian union membership levels have declined markedly over the last three decades and youth union membership levels have decreased more than any age group. Currently around 10% of young workers aged between 16-24 years are members of unions in Australia compared to 26% of workers aged 45-58 (Oliver, 2008). This decline has occurred throughout the union movement, in all states and in almost all industries and occupations. This research, which consists of interviews with union organisers and union officials, draws on perspectives from the labour geography literature to explore how union personnel located in various places, spaces and scales construct the issue of declining youth union membership. It explores the scale of connections within the labour movement and the extent to which these connections are leveraged to address the problem of youth union membership decline. To offer the reader a sense of context and perspective, the thesis firstly outlines the historical development of the union movement. It also reviews the literature on youth membership decline. Labour geography offers a rich and apposite analytical tool for investigation of this area. The notion of ‘scale’ as a dynamic, interactive, constructed and reconstructed entity (Ellem, 2006) is an appropriate lens for viewing youth-union membership issues. In this non-linear view, scale is a relational element which interplays with space, place and the environment (Howett, in Marston, 2000) rather than being ‘sequential’ and hierarchical. Importantly, the thesis investigates the notion of unions as ‘spaces of dependence’ (Cox, 1998a, p.2), organisations whose space is centred upon realising essential interests. It also considers the quality of unions’ interactions with others – their ‘spaces of engagement‘(Cox, 1998a, p.2), and the impact that this has upon their ability to recruit youth. The findings reveal that most respondents across the spectrum of the union movement attribute the decline in youth membership levels to factors external to the movement itself, such as changes to industrial relations legislation and the impact of globalisation on employment markets. However, participants also attribute responsibility for declining membership levels to the union movement itself, citing factors such as a lack of resourcing and a need to change unions’ perceived identity and methods of operation. The research further determined that networks of connections across the union movement are tenuous and, to date, are not being fully utilised to assist unions to overcome the youth recruitment dilemma. The study concludes that potential connections between unions are hampered by poor resourcing, workload issues and some deeply entrenched attitudes related to unions ‘defending (and maintaining) their patch’.
Resumo:
Path planning and trajectory design for autonomous underwater vehicles (AUVs) is of great importance to the oceanographic research community because automated data collection is becoming more prevalent. Intelligent planning is required to maneuver a vehicle to high-valued locations to perform data collection. In this paper, we present algorithms that determine paths for AUVs to track evolving features of interest in the ocean by considering the output of predictive ocean models. While traversing the computed path, the vehicle provides near-real-time, in situ measurements back to the model, with the intent to increase the skill of future predictions in the local region. The results presented here extend prelim- inary developments of the path planning portion of an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. This extension is the incorporation of multiple vehicles to track the centroid and the boundary of the extent of a feature of interest. Similar algorithms to those presented here are under development to consider additional locations for multiple types of features. The primary focus here is on algorithm development utilizing model predictions to assist in solving the motion planning problem of steering an AUV to high-valued locations, with respect to the data desired. We discuss the design technique to generate the paths, present simulation results and provide experimental data from field deployments for tracking dynamic features by use of an AUV in the Southern California coastal ocean.
Resumo:
Designing trajectories for a submerged rigid body motivates this paper. Two approaches are addressed: the time optimal approach and the motion planning ap- proach using concatenation of kinematic motions. We focus on the structure of singular extremals and their relation to the existence of rank-one kinematic reduc- tions; thereby linking the optimization problem to the inherent geometric frame- work. Using these kinematic reductions, we provide a solution to the motion plan- ning problem in the under-actuated scenario, or equivalently, in the case of actuator failures. We finish the paper comparing a time optimal trajectory to one formed by concatenation of pure motions.
Resumo:
An autonomous underwater vehicle (AUV) is expected to operate in an ocean in the presence of poorly known disturbance forces and moments. The uncertainties of the environment makes it difficult to apply open-loop control scheme for the motion planning of the vehicle. The objective of this paper is to develop a robust feedback trajectory tracking control scheme for an AUV that can track a prescribed trajectory amidst such disturbances. We solve a general problem of feedback trajectory tracking of an AUV in SE(3). The feedback control scheme is derived using Lyapunov-type analysis. The results obtained from numerical simulations confirm the asymptotic tracking properties of the feedback control law. We apply the feedback control scheme to different mission scenarios, with the disturbances being initial errors in the state of the AUV.
Resumo:
Trajectory design for Autonomous Underwater Vehicles (AUVs) is of great importance to the oceanographic research community. Intelligent planning is required to maneuver a vehicle to high-valued locations for data collection. We consider the use of ocean model predictions to determine the locations to be visited by an AUV, which then provides near-real time, in situ measurements back to the model to increase the skill of future predictions. The motion planning problem of steering the vehicle between the computed waypoints is not considered here. Our focus is on the algorithm to determine relevant points of interest for a chosen oceanographic feature. This represents a first approach to an end to end autonomous prediction and tasking system for aquatic, mobile sensor networks. We design a sampling plan and present experimental results with AUV retasking in the Southern California Bight (SCB) off the coast of Los Angeles.
Resumo:
The main focus of this paper is on the motion planning problem for an under-actuated, submerged, Omni-directional autonomous vehicle. Underactuation is extremely important to consider in ocean research and exploration. Battery failure, actuator malfunction and electronic shorts are a few reasons that may cause the vehicle to lose direct control of one or more degrees-of-freedom. Underactuation is also critical to understand when designing vehicles for specific tasks, such as torpedo-shaped vehicles. An under-actuated vehicle is less controllable, and hence, the motion planning problem is more difficult. Here, we present techniques based on geometric control to provide solutions to the under-actuated motion planning problem for a submerged underwater vehicle. Our results are validated with experiments.