949 resultados para Concentration-time response modelling
Resumo:
Objective: It is usual that data collected from routine clinical care is sparse and unable to support the more complex pharmacokinetic (PK) models that may have been reported in previous rich data studies. Informative priors may be a pre-requisite for model development. The aim of this study was to estimate the population PK parameters of sirolimus using a fully Bayesian approach with informative priors. Methods: Informative priors including prior mean and precision of the prior mean were elicited from previous published studies using a meta-analytic technique. Precision of between-subject variability was determined by simulations from a Wishart distribution using MATLAB (version 6.5). Concentration-time data of sirolimus retrospectively collected from kidney transplant patients were analysed using WinBUGS (version 1.3). The candidate models were either one- or two-compartment with first order absorption and first order elimination. Model discrimination was based on computation of the posterior odds supporting the model. Results: A total of 315 concentration-time points were obtained from 25 patients. Most data were clustered at trough concentrations with range of 1.6 to 77 hours post-dose. Using informative priors, either a one- or two-compartment model could be used to describe the data. When a one-compartment model was applied, information was gained from the data for the value of apparent clearance (CL/F = 18.5 L/h), and apparent volume of distribution (V/F = 1406 L) but no information was gained about the absorption rate constant (ka). When a two-compartment model was fitted to the data, the data were informative about CL/F, apparent inter-compartmental clearance, and apparent volume of distribution of the peripheral compartment (13.2 L/h, 20.8 L/h, and 579 L, respectively). The posterior distribution of the volume distribution of central compartment and ka were the same as priors. The posterior odds for the two-compartment model was 8.1, indicating the data supported the two-compartment model. Conclusion: The use of informative priors supported the choice of a more complex and informative model that would otherwise have not been supported by the sparse data.
Resumo:
The Operator Choice Model (OCM) was developed to model the behaviour of operators attending to complex tasks involving interdependent concurrent activities, such as in Air Traffic Control (ATC). The purpose of the OCM is to provide a flexible framework for modelling and simulation that can be used for quantitative analyses in human reliability assessment, comparison between human computer interaction (HCI) designs, and analysis of operator workload. The OCM virtual operator is essentially a cycle of four processes: Scan Classify Decide Action Perform Action. Once a cycle is complete, the operator will return to the Scan process. It is also possible to truncate a cycle and return to Scan after each of the processes. These processes are described using Continuous Time Probabilistic Automata (CTPA). The details of the probability and timing models are specific to the domain of application, and need to be specified using domain experts. We are building an application of the OCM for use in ATC. In order to develop a realistic model we are calibrating the probability and timing models that comprise each process using experimental data from a series of experiments conducted with student subjects. These experiments have identified the factors that influence perception and decision making in simplified conflict detection and resolution tasks. This paper presents an application of the OCM approach to a simple ATC conflict detection experiment. The aim is to calibrate the OCM so that its behaviour resembles that of the experimental subjects when it is challenged with the same task. Its behaviour should also interpolate when challenged with scenarios similar to those used to calibrate it. The approach illustrated here uses logistic regression to model the classifications made by the subjects. This model is fitted to the calibration data, and provides an extrapolation to classifications in scenarios outside of the calibration data. A simple strategy is used to calibrate the timing component of the model, and the results for reaction times are compared between the OCM and the student subjects. While this approach to timing does not capture the full complexity of the reaction time distribution seen in the data from the student subjects, the mean and the tail of the distributions are similar.
Resumo:
The objective of this study was to compare the in vitro dissolution profile of a new rapidly absorbed paracetamol tablet containing sodium bicarbonate (PS) with that of a conventional paracetamol tablet (P), and to relate these by deconvolution and mapping to in vivo release. The dissolution methods used include the standard procedure described in the USP monograph for paracetamol tablets, employing buffer at pH5.8 or 0.05 M HCl at stirrer speeds between 10 and 50 rpm. The mapping process was developed and implemented in Microsoft Excel® worksheets that iteratively calculated the optimal values of scale and shape factors which linked in vivo time to in vitro time. The in vitro-in vivo correlation (IVIVC) was carried out simultaneously for both formulations to produce common mapping factors. The USP method, using buffer at pH5.8, demonstrated no difference between the two products. However, using an acidic medium the rate of dissolution of P but not of PS decreased with decreasing stirrer speed. A significant correlation (r=0.773; p<.00001) was established between in vivo release and in vitro dissolution using the profiles obtained with 0.05 M HCl and a stirrer speed of 30 rpm. The scale factor for optimal simultaneous IVIVC in the fasting state was 2.54 and the shape factor was 0.16; corresponding values for mapping in the fed state were 3.37 and 0.13 (implying a larger in vitro-in vivo time difference but reduced shape difference in the fed state). The current IVIVC explains, in part, the observed in vivo variability of the two products. The approach to mapping may also be extended to different batches of these products, to predict the impact of any changes of in vitro dissolution on in vivo release and plasma drug concentration-time profiles.
Resumo:
Measurements of neutron and gamma dose rates in mixed radiation fields, and gamma dose rates from calibrated gamma sources, were performed using a liquid scintillation counter NE213 with a pulse shape discrimination technique based on the charge comparison method. A computer program was used to analyse the experimental data. The radiation field was obtained from a 241Am-9Be source. There was general agreement between measured and calculated neutron and gamma dose rates in the mixed radiation field, but some disagreement in the measurements of gamma dose rates for gamma sources, due to the dark current of the photomultiplier and the effect of the perturbation of the radiation field by the detector. An optical fibre bundle was used to couple an NE213 scintillator to a photomultiplier, in an attempt to minimise these effects. This produced an improvement in the results for gamma sources. However, the optically coupled detector system could not be used for neutron and gamma dose rate measurements in mixed radiation fields. The pulse shape discrimination system became ineffective as a consequence of the slower time response of the detector system.
Resumo:
This thesis presents the results from an investigation into the merits of analysing Magnetoencephalographic (MEG) data in the context of dynamical systems theory. MEG is the study of both the methods for the measurement of minute magnetic flux variations at the scalp, resulting from neuro-electric activity in the neocortex, as well as the techniques required to process and extract useful information from these measurements. As a result of its unique mode of action - by directly measuring neuronal activity via the resulting magnetic field fluctuations - MEG possesses a number of useful qualities which could potentially make it a powerful addition to any brain researcher's arsenal. Unfortunately, MEG research has so far failed to fulfil its early promise, being hindered in its progress by a variety of factors. Conventionally, the analysis of MEG has been dominated by the search for activity in certain spectral bands - the so-called alpha, delta, beta, etc that are commonly referred to in both academic and lay publications. Other efforts have centred upon generating optimal fits of "equivalent current dipoles" that best explain the observed field distribution. Many of these approaches carry the implicit assumption that the dynamics which result in the observed time series are linear. This is despite a variety of reasons which suggest that nonlinearity might be present in MEG recordings. By using methods that allow for nonlinear dynamics, the research described in this thesis avoids these restrictive linearity assumptions. A crucial concept underpinning this project is the belief that MEG recordings are mere observations of the evolution of the true underlying state, which is unobservable and is assumed to reflect some abstract brain cognitive state. Further, we maintain that it is unreasonable to expect these processes to be adequately described in the traditional way: as a linear sum of a large number of frequency generators. One of the main objectives of this thesis will be to prove that much more effective and powerful analysis of MEG can be achieved if one were to assume the presence of both linear and nonlinear characteristics from the outset. Our position is that the combined action of a relatively small number of these generators, coupled with external and dynamic noise sources, is more than sufficient to account for the complexity observed in the MEG recordings. Another problem that has plagued MEG researchers is the extremely low signal to noise ratios that are obtained. As the magnetic flux variations resulting from actual cortical processes can be extremely minute, the measuring devices used in MEG are, necessarily, extremely sensitive. The unfortunate side-effect of this is that even commonplace phenomena such as the earth's geomagnetic field can easily swamp signals of interest. This problem is commonly addressed by averaging over a large number of recordings. However, this has a number of notable drawbacks. In particular, it is difficult to synchronise high frequency activity which might be of interest, and often these signals will be cancelled out by the averaging process. Other problems that have been encountered are high costs and low portability of state-of-the- art multichannel machines. The result of this is that the use of MEG has, hitherto, been restricted to large institutions which are able to afford the high costs associated with the procurement and maintenance of these machines. In this project, we seek to address these issues by working almost exclusively with single channel, unaveraged MEG data. We demonstrate the applicability of a variety of methods originating from the fields of signal processing, dynamical systems, information theory and neural networks, to the analysis of MEG data. It is noteworthy that while modern signal processing tools such as independent component analysis, topographic maps and latent variable modelling have enjoyed extensive success in a variety of research areas from financial time series modelling to the analysis of sun spot activity, their use in MEG analysis has thus far been extremely limited. It is hoped that this work will help to remedy this oversight.
Resumo:
Silicon photonics is a very promising technology for future low-cost high-bandwidth optical telecommunication applications down to the chip level. This is due to the high degree of integration, high optical bandwidth and large speed coupled with the development of a wide range of integrated optical functions. Silicon-based microring resonators are a key building block that can be used to realize many optical functions such as switching, multiplexing, demultiplaxing and detection of optical wave. The ability to tune the resonances of the microring resonators is highly desirable in many of their applications. In this work, the study and application of a thermally wavelength-tunable photonic switch based on silicon microring resonator is presented. Devices with 10μm diameter were systematically studied and used in the design. Its resonance wavelength was tuned by thermally induced refractive index change using a designed local micro-heater. While thermo-optic tuning has moderate speed compared with electro-optic and all-optic tuning, with silicon’s high thermo-optic coefficient, a much wider wavelength tunable range can be realized. The device design was verified and optimized by optical and thermal simulations. The fabrication and characterization of the device was also implemented. The microring resonator has a measured FSR of ∼18 nm, FWHM in the range 0.1-0.2 nm and Q around 10,000. A wide tunable range (>6.4 nm) was achieved with the switch, which enables dense wavelength division multiplexing (DWDM) with a channel space of 0.2nm. The time response of the switch was tested on the order of 10 μs with a low power consumption of ∼11.9mW/nm. The measured results are in agreement with the simulations. Important applications using the tunable photonic switch were demonstrated in this work. 1×4 and 4×4 reconfigurable photonic switch were implemented by using multiple switches with a common bus waveguide. The results suggest the feasibility of on-chip DWDM for the development of large-scale integrated photonics. Using the tunable switch for output wavelength control, a fiber laser was demonstrated with Erbium-doped fiber amplifier as the gain media. For the first time, this approach integrated on-chip silicon photonic wavelength control.
Resumo:
Silicon photonics is a very promising technology for future low-cost high-bandwidth optical telecommunication applications down to the chip level. This is due to the high degree of integration, high optical bandwidth and large speed coupled with the development of a wide range of integrated optical functions. Silicon-based microring resonators are a key building block that can be used to realize many optical functions such as switching, multiplexing, demultiplaxing and detection of optical wave. The ability to tune the resonances of the microring resonators is highly desirable in many of their applications. In this work, the study and application of a thermally wavelength-tunable photonic switch based on silicon microring resonator is presented. Devices with 10µm diameter were systematically studied and used in the design. Its resonance wavelength was tuned by thermally induced refractive index change using a designed local micro-heater. While thermo-optic tuning has moderate speed compared with electro-optic and all-optic tuning, with silicon’s high thermo-optic coefficient, a much wider wavelength tunable range can be realized. The device design was verified and optimized by optical and thermal simulations. The fabrication and characterization of the device was also implemented. The microring resonator has a measured FSR of ~18 nm, FWHM in the range 0.1-0.2 nm and Q around 10,000. A wide tunable range (>6.4 nm) was achieved with the switch, which enables dense wavelength division multiplexing (DWDM) with a channel space of 0.2nm. The time response of the switch was tested on the order of 10 us with a low power consumption of ~11.9mW/nm. The measured results are in agreement with the simulations. Important applications using the tunable photonic switch were demonstrated in this work. 1×4 and 4×4 reconfigurable photonic switch were implemented by using multiple switches with a common bus waveguide. The results suggest the feasibility of on-chip DWDM for the development of large-scale integrated photonics. Using the tunable switch for output wavelength control, a fiber laser was demonstrated with Erbium-doped fiber amplifier as the gain media. For the first time, this approach integrated on-chip silicon photonic wavelength control.
Resumo:
The taxonomic delimitation at the species level in plants is not an easy task due to the large polymorphism of plants. In this project we aimed to evaluate three morphotypes (forms) of Cryptanthus zonatus (Vis.) Beer ( Bromeliaceae, Bromelioideae ) described in the literature using fl oral biology and phenology, as well as flo ral morphology and leaf anatomy . These studies were conducted in the Parque Estadual das Dunas de Natal, Rio Grande Norte (RN) and Private Reserve of Natural Patrimony Mata Estrela , in the municipality of Ba í a Form osa. The survey of the phenology of the morphotypes involved monthly specimen observation in the field, during one year. In each visit, we observed the status of flowering and fruiting phenophases of the population of the three forms of C. zonatus . For flo ral biology we sought to evaluate data like: observed floral visitors, nectar volume and concentration, time of anthesis and closing of flowers . Flowers of the three fo rms were collected in the field , analyzed by stereomicroscope, and measurements of the f loral pieces were made with the help of a caliper . Transversal and paradermal sections of the leaves of the three forms were stained and then examined under an optical microscope. Observations of the epidermis under scanning electron microscopy were also conducted. The three m orphotypes could not be sepated based on all evidence investigated. Thus, we conclude that there is not evidences to support the recognition of C. zonatus morphotypes as taxonomic entities, and also that the tools of phenology, anatomy, biology and floral morphology were not useful to delimit these three forms . Yet to characterize better the Flora of Bromeli aceae of RN, the leaf anatomy of Orthophytum disjunctum was also studied. Orthophytum is the sister genus to Cryptanthus and only recently documented in the semiarid of RN. The anatomical comparison between Cryptanthus and Orthophytum allowed the separatio n of both genera based on the arrangement of stomata and thickness of aquiferous parênquima . During the fieldwork, it was still possible to document the first occurrence of Aechmea muricata in RN, inside the Mata Estrela preserve, aiding the understanding of the distribution of the taxon that is currently threatened with extinction.
Resumo:
A manutenção e evolução de sistemas de software tornou-se uma tarefa bastante crítica ao longo dos últimos anos devido à diversidade e alta demanda de funcionalidades, dispositivos e usuários. Entender e analisar como novas mudanças impactam os atributos de qualidade da arquitetura de tais sistemas é um pré-requisito essencial para evitar a deterioração de sua qualidade durante sua evolução. Esta tese propõe uma abordagem automatizada para a análise de variação do atributo de qualidade de desempenho em termos de tempo de execução (tempo de resposta). Ela é implementada por um framework que adota técnicas de análise dinâmica e mineração de repositório de software para fornecer uma forma automatizada de revelar fontes potenciais – commits e issues – de variação de desempenho em cenários durante a evolução de sistemas de software. A abordagem define quatro fases: (i) preparação – escolher os cenários e preparar os releases alvos; (ii) análise dinâmica – determinar o desempenho de cenários e métodos calculando seus tempos de execução; (iii) análise de variação – processar e comparar os resultados da análise dinâmica para releases diferentes; e (iv) mineração de repositório – identificar issues e commits associados com a variação de desempenho detectada. Estudos empíricos foram realizados para avaliar a abordagem de diferentes perspectivas. Um estudo exploratório analisou a viabilidade de se aplicar a abordagem em sistemas de diferentes domínios para identificar automaticamente elementos de código fonte com variação de desempenho e as mudanças que afetaram tais elementos durante uma evolução. Esse estudo analisou três sistemas: (i) SIGAA – um sistema web para gerência acadêmica; (ii) ArgoUML – uma ferramenta de modelagem UML; e (iii) Netty – um framework para aplicações de rede. Outro estudo realizou uma análise evolucionária ao aplicar a abordagem em múltiplos releases do Netty, e dos frameworks web Wicket e Jetty. Nesse estudo foram analisados 21 releases (sete de cada sistema), totalizando 57 cenários. Em resumo, foram encontrados 14 cenários com variação significante de desempenho para Netty, 13 para Wicket e 9 para Jetty. Adicionalmente, foi obtido feedback de oito desenvolvedores desses sistemas através de um formulário online. Finalmente, no último estudo, um modelo de regressão para desempenho foi desenvolvido visando indicar propriedades de commits que são mais prováveis a causar degradação de desempenho. No geral, 997 commits foram minerados, sendo 103 recuperados de elementos de código fonte degradados e 19 de otimizados, enquanto 875 não tiveram impacto no tempo de execução. O número de dias antes de disponibilizar o release e o dia da semana se mostraram como as variáveis mais relevantes dos commits que degradam desempenho no nosso modelo. A área de característica de operação do receptor (ROC – Receiver Operating Characteristic) do modelo de regressão é 60%, o que significa que usar o modelo para decidir se um commit causará degradação ou não é 10% melhor do que uma decisão aleatória.
Resumo:
A manutenção e evolução de sistemas de software tornou-se uma tarefa bastante crítica ao longo dos últimos anos devido à diversidade e alta demanda de funcionalidades, dispositivos e usuários. Entender e analisar como novas mudanças impactam os atributos de qualidade da arquitetura de tais sistemas é um pré-requisito essencial para evitar a deterioração de sua qualidade durante sua evolução. Esta tese propõe uma abordagem automatizada para a análise de variação do atributo de qualidade de desempenho em termos de tempo de execução (tempo de resposta). Ela é implementada por um framework que adota técnicas de análise dinâmica e mineração de repositório de software para fornecer uma forma automatizada de revelar fontes potenciais – commits e issues – de variação de desempenho em cenários durante a evolução de sistemas de software. A abordagem define quatro fases: (i) preparação – escolher os cenários e preparar os releases alvos; (ii) análise dinâmica – determinar o desempenho de cenários e métodos calculando seus tempos de execução; (iii) análise de variação – processar e comparar os resultados da análise dinâmica para releases diferentes; e (iv) mineração de repositório – identificar issues e commits associados com a variação de desempenho detectada. Estudos empíricos foram realizados para avaliar a abordagem de diferentes perspectivas. Um estudo exploratório analisou a viabilidade de se aplicar a abordagem em sistemas de diferentes domínios para identificar automaticamente elementos de código fonte com variação de desempenho e as mudanças que afetaram tais elementos durante uma evolução. Esse estudo analisou três sistemas: (i) SIGAA – um sistema web para gerência acadêmica; (ii) ArgoUML – uma ferramenta de modelagem UML; e (iii) Netty – um framework para aplicações de rede. Outro estudo realizou uma análise evolucionária ao aplicar a abordagem em múltiplos releases do Netty, e dos frameworks web Wicket e Jetty. Nesse estudo foram analisados 21 releases (sete de cada sistema), totalizando 57 cenários. Em resumo, foram encontrados 14 cenários com variação significante de desempenho para Netty, 13 para Wicket e 9 para Jetty. Adicionalmente, foi obtido feedback de oito desenvolvedores desses sistemas através de um formulário online. Finalmente, no último estudo, um modelo de regressão para desempenho foi desenvolvido visando indicar propriedades de commits que são mais prováveis a causar degradação de desempenho. No geral, 997 commits foram minerados, sendo 103 recuperados de elementos de código fonte degradados e 19 de otimizados, enquanto 875 não tiveram impacto no tempo de execução. O número de dias antes de disponibilizar o release e o dia da semana se mostraram como as variáveis mais relevantes dos commits que degradam desempenho no nosso modelo. A área de característica de operação do receptor (ROC – Receiver Operating Characteristic) do modelo de regressão é 60%, o que significa que usar o modelo para decidir se um commit causará degradação ou não é 10% melhor do que uma decisão aleatória.
Resumo:
The penetration of the electric vehicle (EV) has increased rapidly in recent years mainly as a consequence of advances in transport technology and power electronics and in response to global pressure to reduce carbon emissions and limit fossil fuel consumption. It is widely acknowledged that inappropriate provision and dispatch of EV charging can lead to negative impacts on power system infrastructure. This paper considers EV requirements and proposes a module which uses owner participation, through mobile phone apps and on-board diagnostics II (OBD-II), for scheduled vehicle charging. A multi-EV reference and single-EV real-time response (MRS2R) online algorithm is proposed to calculate the maximum and minimum adjustable limits of necessary capacity, which forms part of decision-making support in power system dispatch. The proposed EV dispatch module is evaluated in a case study and the influence of the mobile app, EV dispatch trending and commercial impact is explored.
Resumo:
Self-assembly of nanoparticles is a promising route to form complex, nanostructured materials with functional properties. Nanoparticle assemblies characterized by a crystallographic alignment of the nanoparticles on the atomic scale, i.e. mesocrystals, are commonly found in nature with outstanding functional and mechanical properties. This thesis aims to investigate and understand the formation mechanisms of mesocrystals formed by self-assembling iron oxide nanocubes. We have used the thermal decomposition method to synthesize monodisperse, oleate-capped iron oxide nanocubes with average edge lengths between 7 nm and 12 nm and studied the evaporation-induced self-assembly in dilute toluene-based nanocube dispersions. The influence of packing constraints on the alignment of the nanocubes in nanofluidic containers has been investigated with small and wide angle X-ray scattering (SAXS and WAXS, respectively). We found that the nanocubes preferentially orient one of their {100} faces with the confining channel wall and display mesocrystalline alignment irrespective of the channel widths. We manipulated the solvent evaporation rate of drop-cast dispersions on fluorosilane-functionalized silica substrates in a custom-designed cell. The growth stages of the assembly process were investigated using light microscopy and quartz crystal microbalance with dissipation monitoring (QCM-D). We found that particle transport phenomena, e.g. the coffee ring effect and Marangoni flow, result in complex-shaped arrays near the three-phase contact line of a drying colloidal drop when the nitrogen flow rate is high. Diffusion-driven nanoparticle assembly into large mesocrystals with a well-defined morphology dominates at much lower nitrogen flow rates. Analysis of the time-resolved video microscopy data was used to quantify the mesocrystal growth and establish a particle diffusion-based, three-dimensional growth model. The dissipation obtained from the QCM-D signal reached its maximum value when the microscopy-observed lateral growth of the mesocrystals ceased, which we address to the fluid-like behavior of the mesocrystals and their weak binding to the substrate. Analysis of electron microscopy images and diffraction patterns showed that the formed arrays display significant nanoparticle ordering, regardless of the distinctive formation process. We followed the two-stage formation mechanism of mesocrystals in levitating colloidal drops with real-time SAXS. Modelling of the SAXS data with the square-well potential together with calculations of van der Waals interactions suggests that the nanocubes initially form disordered clusters, which quickly transform into an ordered phase.
Resumo:
Hyperspectral instruments have been incorporated in satellite missions, providing data of high spectral resolution of the Earth. This data can be used in remote sensing applications, such as, target detection, hazard prevention, and monitoring oil spills, among others. In most of these applications, one of the requirements of paramount importance is the ability to give real-time or near real-time response. Recently, onboard processing systems have emerged, in order to overcome the huge amount of data to transfer from the satellite to the ground station, and thus, avoiding delays between hyperspectral image acquisition and its interpretation. For this purpose, compact reconfigurable hardware modules, such as field programmable gate arrays (FPGAs) are widely used. This paper proposes a parallel FPGA-based architecture for endmember’s signature extraction. This method based on the Vertex Component Analysis (VCA) has several advantages, namely it is unsupervised, fully automatic, and it works without dimensionality reduction (DR) pre-processing step. The architecture has been designed for a low cost Xilinx Zynq board with a Zynq-7020 SoC FPGA based on the Artix-7 FPGA programmable logic and tested using real hyperspectral data sets collected by the NASA’s Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) over the Cuprite mining district in Nevada. Experimental results indicate that the proposed implementation can achieve real-time processing, while maintaining the methods accuracy, which indicate the potential of the proposed platform to implement high-performance, low cost embedded systems, opening new perspectives for onboard hyperspectral image processing.
Resumo:
Single-walled carbon nanotubes (SWNTs) have been studied as a prominent class of high performance electronic materials for next generation electronics. Their geometry dependent electronic structure, ballistic transport and low power dissipation due to quasi one dimensional transport, and their capability of carrying high current densities are some of the main reasons for the optimistic expectations on SWNTs. However, device applications of individual SWNTs have been hindered by uncontrolled variations in characteristics and lack of scalable methods to integrate SWNTs into electronic devices. One relatively new direction in SWNT electronics, which avoids these issues, is using arrays of SWNTs, where the ensemble average may provide uniformity from device to device, and this new breed of electronic material can be integrated into electronic devices in a scalable fashion. This dissertation describes (1) methods for characterization of SWNT arrays, (2) how the electrical transport in these two-dimensional arrays depend on length scales and spatial anisotropy, (3) the interaction of aligned SWNTs with the underlying substrate, and (4) methods for scalable integration of SWNT arrays into electronic devices. The electrical characterization of SWNT arrays have been realized by polymer electrolyte-gated SWNT thin film transistors (TFTs). Polymer electrolyte-gating addresses many technical difficulties inherent to electrical characterization by gating through oxide-dielectrics. Having shown polymer electrolyte-gating can be successfully applied on SWNT arrays, we have studied the length scaling dependence of electrical transport in SWNT arrays. Ultrathin films formed by sub-monolayer surface coverage of SWNT arrays are very interesting systems in terms of the physics of two-dimensional electronic transport. We have observed that they behave qualitatively different than the classical conducting films, which obey the Ohm’s law. The resistance of an ultrathin film of SWNT arrays is indeed non-linear with the length of the film, across which the transport occurs. More interestingly, a transition between conducting and insulating states is observed at a critical surface coverage, which is called percolation limit. The surface coverage of conducting SWNTs can be manipulated by turning on and off the semiconductors in the SWNT array, leading to the operation principle of SWNT TFTs. The percolation limit depends also on the length and the spatial orientation of SWNTs. We have also observed that the percolation limit increases abruptly for aligned arrays of SWNTs, which are grown on single crystal quartz substrates. In this dissertation, we also compare our experimental results with a two-dimensional stick network model, which gives a good qualitative picture of the electrical transport in SWNT arrays in terms of surface coverage, length scaling, and spatial orientation, and briefly discuss the validity of this model. However, the electronic properties of SWNT arrays are not only determined by geometrical arguments. The contact resistances at the nanotube-nanotube and nanotube-electrode (bulk metal) interfaces, and interactions with the local chemical groups and the underlying substrates are among other issues related to the electronic transport in SWNT arrays. Different aspects of these factors have been studied in detail by many groups. In fact, I have also included a brief discussion about electron injection onto semiconducting SWNTs by polymer dopants. On the other hand, we have compared the substrate-SWNT interactions for isotropic (in two dimensions) arrays of SWNTs grown on Si/SiO2 substrates and horizontally (on substrate) aligned arrays of SWNTs grown on single crystal quartz substrates. The anisotropic interactions associated with the quartz lattice between quartz and SWNTs that allow near perfect horizontal alignment on substrate along a particular crystallographic direction is examined by Raman spectroscopy, and shown to lead to uniaxial compressive strain in as-grown SWNTs on single crystal quartz. This is the first experimental demonstration of the hard-to-achieve uniaxial compression of SWNTs. Temperature dependence of Raman G-band spectra along the length of individual nanotubes reveals that the compressive strain is non-uniform and can be larger than 1% locally at room temperature. Effects of device fabrication steps on the non-uniform strain are also examined and implications on electrical performance are discussed. Based on our findings, there are discussions about device performances and designs included in this dissertation. The channel length dependences of device mobilities and on/off ratios are included for SWNT TFTs. Time response of polymer-electrolyte gated SWNT TFTs has been measured to be ~300 Hz, and a proof-of-concept logic inverter has been fabricated by using polymer electrolyte gated SWNT TFTs for macroelectronic applications. Finally, I dedicated a chapter on scalable device designs based on aligned arrays of SWNTs, including a design for SWNT memory devices.
Resumo:
Coefficient diagram method is a controller design technique for linear time-invariant systems. This design procedure occurs into two different domains: an algebraic and a graphical. The former is closely paired to a conventional pole placement method and the latter consists on a diagram whose reading from the plotted curves leads to insights regarding closed-loop control system time response, stability and robustness. The controller structure has two degrees of freedom and the design process leads to both low overshoot closed-loop time response and good robustness performance regarding mismatches between the real system and the design model. This article presents an overview on this design method. In order to make more transparent the presented theoretical concepts, examples in Matlab®code are provided. The included code illustrates both the algebraic and the graphical nature of the coefficient diagram design method. © 2016, King Fahd University of Petroleum & Minerals.