812 resultados para Computer-Aided Engineering (CAD, CAE)
Resumo:
Different kinds of algorithms can be chosen so as to compute elementary functions. Among all of them, it is worthwhile mentioning the shift-and-add algorithms due to the fact that they have been specifically designed to be very simple and to save computer resources. In fact, almost the only operations usually involved with these methods are additions and shifts, which can be easily and efficiently performed by a digital processor. Shift-and-add algorithms allow fairly good precision with low cost iterations. The most famous algorithm belonging to this type is CORDIC. CORDIC has the capability of approximating a wide variety of functions with only the help of a slight change in their iterations. In this paper, we will analyze the requirements of some engineering and industrial problems in terms of type of operands and functions to approximate. Then, we will propose the application of shift-and-add algorithms based on CORDIC to these problems. We will make a comparison between the different methods applied in terms of the precision of the results and the number of iterations required.
Resumo:
Background. Tremendous advances in biomaterials science and nanotechnologies, together with thorough research on stem cells, have recently promoted an intriguing development of regenerative medicine/tissue engineering. The nanotechnology represents a wide interdisciplinary field that implies the manipulation of different materials at nanometer level to achieve the creation of constructs that mimic the nanoscale-based architecture of native tissues. Aim. The purpose of this article is to highlight the significant new knowledges regarding this matter. Emerging acquisitions. To widen the range of scaffold materials resort has been carried out to either recombinant DNA technology-generated materials, such as a collagen-like protein, or the incorporation of bioactive molecules, such as RDG (arginine-glycine-aspartic acid), into synthetic products. Both the bottom-up and the top-down fabrication approaches may be properly used to respectively obtain sopramolecular architectures or, instead, micro-/nanostructures to incorporate them within a preexisting complex scaffold construct. Computer-aided design/manufacturing (CAD/CAM) scaffold technique allows to achieve patient-tailored organs. Stem cells, because of their peculiar properties - ability to proliferate, self-renew and specific cell-lineage differentiate under appropriate conditions - represent an attractive source for intriguing tissue engineering/regenerative medicine applications. Future research activities. New developments in the realization of different organs tissue engineering will depend on further progress of both the science of nanoscale-based materials and the knowledge of stem cell biology. Moreover the in vivo tissue engineering appears to be the logical step of the current research.
Resumo:
This work discusses a 4D lung reconstruction method from unsynchronized MR sequential images. The lung, differently from the heart, does not have its own muscles, turning impossible to see its real movements. The visualization of the lung in motion is an actual topic of research in medicine. CT (Computerized Tomography) can obtain spatio-temporal images of the heart by synchronizing with electrocardiographic waves. The FOV of the heart is small when compared to the lung`s FOV. The lung`s movement is not periodic and is susceptible to variations in the degree of respiration. Compared to CT, MR (Magnetic Resonance) imaging involves longer acquisition times and it is not possible to obtain instantaneous 3D images of the lung. For each slice, only one temporal sequence of 2D images can be obtained. However, methods using MR are preferable because they do not involve radiation. In this paper, based on unsynchronized MR images of the lung an animated B-Repsolid model of the lung is created. The 3D animation represents the lung`s motion associated to one selected sequence of MR images. The proposed method can be divided in two parts. First, the lung`s silhouettes moving in time are extracted by detecting the presence of a respiratory pattern on 2D spatio-temporal MR images. This approach enables us to determine the lung`s silhouette for every frame, even on frames with obscure edges. The sequence of extracted lung`s silhouettes are unsynchronized sagittal and coronal silhouettes. Using our algorithm it is possible to reconstruct a 3D lung starting from a silhouette of any type (coronal or sagittal) selected from any instant in time. A wire-frame model of the lung is created by composing coronal and sagittal planar silhouettes representing cross-sections. The silhouette composition is severely underconstrained. Many wire-frame models can be created from the observed sequences of silhouettes in time. Finally, a B-Rep solid model is created using a meshing algorithm. Using the B-Rep solid model the volume in time for the right and left lungs were calculated. It was possible to recognize several characteristics of the 3D real right and left lungs in the shaded model. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: The aim of this research was to evaluate the fatigue behavior and reliability of monolithic computer-aided design/computer-assisted manufacture (CAD/CAM) lithium disilicate and hand-layer-veneered zirconia all-ceramic crowns. Materials and Methods: A CAD-based mandibular molar crown preparation, fabricated using rapid prototyping, served as the master die. Fully anatomically shaped monolithic lithium disilicate crowns (IPS e.max CAD, n = 19) and hand-layer-veneered zirconia-based crowns (IPS e.max ZirCAD/Ceram, n = 21) were designed and milled using a CAD/CAM system. Crowns were cemented on aged dentinlike composite dies with resin cement. Crowns were exposed to mouth-motion fatigue by sliding a WC-indenter (r = 3.18 mm) 0.7 mm lingually down the distobuccal cusp using three different step-stress profiles until failure occurred. Failure was designated as a large chip or fracture through the crown. If no failures occurred at high loads (> 900 N), the test method was changed to staircase r ratio fatigue. Stress level probability curves and reliability were calculated. Results: Hand-layer-veneered zirconia crowns revealed veneer chipping and had a reliability of < 0.01 (0.03 to 0.00, two-sided 90% confidence bounds) for a mission of 100,000 cycles and a 200-N load. None of the fully anatomically shaped CAD/CAM-fabricated monolithic lithium disilicate crowns failed during step-stress mouth-motion fatigue (180,000 cycles, 900 N). CAD/CAM lithium disilicate crowns also survived r ratio fatigue (1,000,000 cycles, 100 to 1,000 N). There appears to be a threshold for damage/bulk fracture for the lithium disilicate ceramic in the range of 1,100 to 1,200 N. Conclusion: Based on present fatigue findings, the application of CAD/CAM lithium disilicate ceramic in a monolithic/fully anatomical configuration resulted in fatigue-resistant crowns, whereas hand-layer-veneered zirconia crowns revealed a high susceptibility to mouth-motion cyclic loading with early veneer failures. Int J Prosthodont 2010; 23: 434-442.
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde - Área de especialização: Imagem Digital por Radiação X.
Resumo:
Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)
Resumo:
This master’s thesis aims to study and represent from literature how evolutionary algorithms are used to solve different search and optimisation problems in the area of software engineering. Evolutionary algorithms are methods, which imitate the natural evolution process. An artificial evolution process evaluates fitness of each individual, which are solution candidates. The next population of candidate solutions is formed by using the good properties of the current population by applying different mutation and crossover operations. Different kinds of evolutionary algorithm applications related to software engineering were searched in the literature. Applications were classified and represented. Also the necessary basics about evolutionary algorithms were presented. It was concluded, that majority of evolutionary algorithm applications related to software engineering were about software design or testing. For example, there were applications about classifying software production data, project scheduling, static task scheduling related to parallel computing, allocating modules to subsystems, N-version programming, test data generation and generating an integration test order. Many applications were experimental testing rather than ready for real production use. There were also some Computer Aided Software Engineering tools based on evolutionary algorithms.
Resumo:
Virtual reality has the potential to improve visualisation of building design and construction, but its implementation in the industry has yet to reach maturity. Present day translation of building data to virtual reality is often unidirectional and unsatisfactory. Three different approaches to the creation of models are identified and described in this paper. Consideration is given to the potential of both advances in computer-aided design and the emerging standards for data exchange to facilitate an integrated use of virtual reality. Commonalities and differences between computer-aided design and virtual reality packages are reviewed, and trials of current system, are described. The trials have been conducted to explore the technical issues related to the integrated use of CAD and virtual environments within the house building sector of the construction industry and to investigate the practical use of the new technology.
Resumo:
Computer-aided design/computer-aided manufacturing images can be taken through either direct or indirect imaging. For the indirect systems, the digitalization is obtained from the impression material or cast, and for the direct ones the image is taken directly from the mouth using intraoral scanners.The direct acquisition systems have been constantly improved because these are less invasive, quicker, and more precise than the conventional method. Besides, the digital images can be easily stored for a long time. Therefore, the aim of this paper was to describe and discuss based on the literature the main direct image acquisition systems available on the market: CEREC Bluecam (Sirona), Lava C.O.S. System (3M ESPE), iTero System (Cadent/Straumann), and E4D System (D4D Technologies).
Resumo:
A green ceramic tape micro heat exchanger was developed using LTCC technology. The device was designed by using a CAD software and 2D and 3D simulations using a CFD package (COMSOL Multiphysics) to evaluate the fluid behavior in the microchannels. The micro heat exchanger is composed of five thermal exchange plates in cross flow arrangement and two connecting plates; heat exchanger dimensions are 26 × 26 × 6 mm3. Preliminary tests were carried out to characterize the device both in atmospheric pressure and in vacuum. The same techniques used in vacuum technology were applied to check the rotameters and to prevent device leakages. Thermal performance of the micro heat exchanger was experimentally tested. © 2009 Elsevier B.V. All rights reserved.
Resumo:
Background: This article describes a clinical report with a new system for guided surgical treatment and immediate load prosthesis in the flapless surgical technique. Case report: Based on a computed tomography (CT) of a 64 - year-old edentulous patient, the cross sections were reformatted and used to construct a virtual planning of the implants and a guide template in Dental Slice. Six dental implants were placed in the maxilla and mandible using a Slice Guide System. Following a 30-month in maxilla and 24-month in mandible healing period, the clinical and radiographic evaluation and computed tomography (CT) showed good clinical stability. The Slice Guide System proved satisfactory for the Flapless Surgical Technique in dental implants.
Resumo:
The representation of real objects in virtual environments has applications in many areas, such as cartography, mixed reality and reverse engineering. The generation of these objects can be performed through two ways: manually, with CAD (Computer Aided Design) tools, or automatically, by means of surface reconstruction techniques. The simpler the 3D model, the easier it is to process and store it. However, this methods can generate very detailed virtual elements, that can result in some problems when processing the resulting mesh, because it has a lot of edges and polygons that have to be checked at visualization. Considering this context, it can be applied simplification algorithms to eliminate polygons from resulting mesh, without change its topology, generating a lighter mesh with less irrelevant details. The project aimed the study, implementation and comparative tests of simplification algorithms applied to meshes generated through a reconstruction pipeline based on point clouds. This work proposes the realization of the simplification step, like a complement to the pipeline developed by (ONO et al., 2012), that developed reconstruction through cloud points obtained by Microsoft Kinect, and then using Poisson algorithm
Resumo:
The representation of real objects in virtual environments has applications in many areas, such as cartography, mixed reality and reverse engineering. The generation of these objects can be performed in two ways: manually, with CAD (Computer Aided Design) tools, or automatically, by means of surface reconstruction techniques. The simpler the 3D model, the easier it is to process and store it. Multiresolution reconstruction methods can generate polygonal meshes in different levels of detail and, to improve the response time of a computer program, distant objects can be represented with few details, while more detailed models are used in closer objects. This work presents a new approach to multiresolution surface reconstruction, particularly interesting to noisy and low definition data, for example, point clouds captured with Kinect sensor
Resumo:
This study aimed to examine the reverse engineering and respond to a concern about the possible application of this concept in art, breaking down barriers and breaking paradigms. Using 3D scanning, the art of computer aided design and manufacturing – CAD/CAM, machining by computer numerical control - CNC, engineering, and applying this methodology in the arts especially in sculpture, it is possible to dematerialize a artwork, virtualizes it in 3D programs, make speeches, and process a new work, a new art elsewhere. By the example of surgeries at a distance, the artist, or technical author could produce their works, and materialize them anywhere. In other words, do the reverse gear. It discusses the relationship between art and technology, the role of the author, the viewer, which can interfere with the interactivity that case by stating that art, exists only in the look and feel of the viewer.