916 resultados para Compactification and String Models
Resumo:
We study a climatologically important interaction of two of the main components of the geophysical system by adding an energy balance model for the averaged atmospheric temperature as dynamic boundary condition to a diagnostic ocean model having an additional spatial dimension. In this work, we give deeper insight than previous papers in the literature, mainly with respect to the 1990 pioneering model by Watts and Morantine. We are taking into consideration the latent heat for the two phase ocean as well as a possible delayed term. Non-uniqueness for the initial boundary value problem, uniqueness under a non-degeneracy condition and the existence of multiple stationary solutions are proved here. These multiplicity results suggest that an S-shaped bifurcation diagram should be expected to occur in this class of models generalizing previous energy balance models. The numerical method applied to the model is based on a finite volume scheme with nonlinear weighted essentially non-oscillatory reconstruction and Runge–Kutta total variation diminishing for time integration.
Resumo:
Despite the extensive implementation of Superstreets on congested arterials, reliable methodologies for such designs remain unavailable. The purpose of this research is to fill the information gap by offering reliable tools to assist traffic professionals in the design of Superstreets with and without signal control. The entire tool developed in this thesis consists of three models. The first model is used to determine the minimum U-turn offset length for an Un-signalized Superstreet, given the arterial headway distribution of the traffic flows and the distribution of critical gaps among drivers. The second model is designed to estimate the queue size and its variation on each critical link in a signalized Superstreet, based on the given signal plan and the range of observed volumes. Recognizing that the operational performance of a Superstreet cannot be achieved without an effective signal plan, the third model is developed to produce a signal optimization method that can generate progression offsets for heavy arterial flows moving into and out of such an intersection design.
Resumo:
Purpose: To investigate the effect of licochalcone A (LA) on the inhibition of cell proliferation and ERK1/2 phosphorylation in bladder carcinoma cell lines. Methods: Cell viability was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay. Dye-binding method was used to examine the concentration of proteins. Lymphocytes were extracted from mice and after surface staining were subjected to BD fixation and permeabilization for intracellular staining. Flow cytometry was used to measure cellular fluorescence. Results: MTT results revealed a significant decrease in the proliferation of UM-UC-3, J82 and HT-1197 cell lines on treatment with LA. LA also induced reduction in phosphorylation of ERK1/2 in all three carcinoma cell lines. In the mouse model, licochalcone A treatment via intraperitoneal (ip) administration induced a significant decrease in the level of regulatory T cells (Tregs). Comparison of the mouse interferon-α (IFN-α)-treated and LA-treated groups revealed that LA treatment caused enhancement of cytotoxic T lymphocyte (CTL) activity similar to that of IFN-α. Administration of UM-UC-3 cells in C3H/HeN mice resulted in marked reduction in the counts for splenocytes and CD4+ CD25+ Foxp3+ T (regulatory T cells) cell proportion in LA-treated mice compared to untreated control group. Conclusion: Licochalcone A may be of therapeutic importance for the prevention of bladder carcinoma. However, studies are required to ascertain the compound’s usefulness in this regard.
Resumo:
Marine protected areas (MPAs) are today's most important tools for the spatial management and conservation of marine species. Yet, the true protection that they provide to individual fish is unknown, leading to uncertainty associated with MPA effectiveness. In this study, conducted in a recently established coastal MPA in Portugal, we combined the results of individual home range estimation and population distribution models for 3 species of commercial importance and contrasting life histories to infer (1) the size of suitable areas where they would be fully protected and (2) the vulnerability to fishing mortality of each species. Results show that the relationship between MPA size and effective protection is strongly modulated by both the species' home range and the distribution of suitable habitat inside and outside the MPA. This approach provides a better insight into the true potential of MPAs in effectively protecting marine species, since it can reveal the size and location of the areas where protection is most effective and a clear, quantitative estimation of the vulnerability to fishing throughout an entire MPA.
Resumo:
Species occurrence and abundance models are important tools that can be used in biodiversity conservation, and can be applied to predict or plan actions needed to mitigate the environmental impacts of hydropower dams. In this study our objectives were: (i) to model the occurrence and abundance of threatened plant species, (ii) to verify the relationship between predicted occurrence and true abundance, and (iii) to assess whether models based on abundance are more effective in predicting species occurrence than those based on presence–absence data. Individual representatives of nine species were counted within 388 randomly georeferenced plots (10 m × 50 m) around the Barra Grande hydropower dam reservoir in southern Brazil. We modelled their relationship with 15 environmental variables using both occurrence (Generalised Linear Models) and abundance data (Hurdle and Zero-Inflated models). Overall, occurrence models were more accurate than abundance models. For all species, observed abundance was significantly, although not strongly, correlated with the probability of occurrence. This correlation lost significance when zero-abundance (absence) sites were excluded from analysis, but only when this entailed a substantial drop in sample size. The same occurred when analysing relationships between abundance and probability of occurrence from previously published studies on a range of different species, suggesting that future studies could potentially use probability of occurrence as an approximate indicator of abundance when the latter is not possible to obtain. This possibility might, however, depend on life history traits of the species in question, with some traits favouring a relationship between occurrence and abundance. Reconstructing species abundance patterns from occurrence could be an important tool for conservation planning and the management of threatened species, allowing scientists to indicate the best areas for collection and reintroduction of plant germplasm or choose conservation areas most likely to maintain viable populations.
Resumo:
In the Iberian Variscides several first order arcuate structures have been considered. In spite of being highly studied their characterization, formation mechanisms and even existence is still debatable. Themain Ibero-Armorican Arc (IAA) is essentially defined by a predominantNW–SE trend in the Iberian branch and an E–Wtrend in the Brittany one. However, in northern Spain it presents a 180° rotation, sometimes known as the Cantabrian Arc (CA). The relation between both arcs is controversial, being considered either as a single arc due to one tectonic event, or as the result of a polyphasic process. According to the last assumption, there is a later arcuate structure (CA), overlapping a previousmajor one (IAA). Whatever themodels, they must be able to explain the presence of a Variscan sinistral transpression in Iberia and a dextral one in Armorica, and a deformation spanning from the Devonian to the Upper Carboniferous. Another arcuate structure, in continuity with the CA, the Central-Iberian Arc (CIA) was recently proposed mainly based upon on magnetic anomalies, geometry of major folds and Ordovician paleocurrents. The critical review of the structural, stratigraphic and geophysical data supports both the IAA and the CA, but as independent structures. However, the presence of a CIA is highly questionable and could not be supported. The complex strain pattern of the IAA and the CA could be explained by a Devonian — Carboniferous polyphasic indentation of a Gondwana promontory. In thismodel the CA is essentially a thin-skinned arc,while the IAA has a more complex and longer evolution that has led to a thick-skinned first order structure. Nevertheless, both arcs are essentially the result of a lithospheric bending process during the Iberian Variscides.
Resumo:
During its history, several significant earthquakes have shaken the Lower Tagus Valley (Portugal). These earthquakes were destructive; some strong earthquakes were produced by large ruptures in offshore structures located southwest of the Portuguese coastline, and other moderate earthquakes were produced by local faults. In recent years, several studies have successfully obtained strong-ground motion syntheses for the Lower Tagus Valley using the finite difference method. To confirm the velocity model of this sedimentary basin obtained from geophysical and geological data, we analysed the ambient seismic noise measurements by applying the horizontal to vertical spectral ratio (HVSR) method. This study reveals the dependence of the frequency and amplitude of the low-frequency (HVSR) peaks (0.2–2 Hz) on the sediment thickness. We have obtained the depth of the Cenozoic basement along a profile transversal to the basin by the inversion of these ratios, imposing constraints from seismic reflection, boreholes, seismic sounding and gravimetric and magnetic potentials. This technique enables us to improve the existing three-dimensional model of the Lower Tagus Valley structure. The improved model will be decisive for the improvement of strong motion predictions in the earthquake hazard analysis of this highly populated basin. The methodology discussed can be applied to any other sedimentary basin.
Resumo:
Shockley diode equation is basic for single diode model equation, which is overly used for characterizing the photovoltaic cell output and behavior. In the standard equation, it includes series resistance (Rs) and shunt resistance (Rsh) with different types of parameters. Maximum simulation and modeling work done previously, related to single diode photovoltaic cell used this equation. However, there is another form of the standard equation which has not included Series Resistance (Rs) and Shunt Resistance (Rsh) yet, as the Shunt Resistance is much bigger than the load resistance and the load resistance is much bigger than the Series Resistance. For this phenomena, very small power loss occurs within a photovoltaic cell. This research focuses on the comparison of two forms of basic Shockley diode equation. This analysis describes a deep understanding of the photovoltaic cell, as well as gives understanding about Series Resistance (Rs) and Shunt Resistance (Rsh) behavior in the Photovoltaic cell. For making estimation of a real time photovoltaic system, faster calculation is needed. The equation without Series Resistance and Shunt Resistance is appropriate for the real time environment. Error function for both Series resistance (Rs) and Shunt resistances (Rsh) have been analyzed which shows that the total system is not affected by this two parameters' behavior.
Resumo:
The mesophotic zone is frequently defined as ranging between 30-40 and 150 m depth. However, these borders are necessarily imprecise due to variations in the penetration of light along the water column related to local factors. Moreover, density of data on mesophotic ecosystems vary along geographical distance, with temperate latitudes largely less explored than tropical situations. This is the case of the Mediterranean Sea, where information on mesophotic ecosystems is largely lower with respect to tropical situations. The lack of a clear definition of the borders of the mesophotic zone may represent a problem when information must be transferred to the policy that requires a coherent spatial definition to plan proper management and conservation measures. The present thesis aims at providing information on the spatial definition of the mesophotic zone in the Mediterranean Sea, its biodiversity and distribution of its ecosystems. The first chapter analyzes information on mesophotic ecosystems in the Mediterranean Sea to identify gaps in the literature and map the mesophotic zone in the Mediterranean Sea using light penetration estimated from satellite data. In the second chapter, different visual techniques to study mesophotic ecosystems are compared to identify the best analytical method to estimate diversity and habitat extension. In the third chapter, a set of Remotely Operated vehicles (ROV) surveys performed on mesophotic assemblages in the Mediterranean Sea are analyzed to describe their taxonomic and functional diversity and environmental factors influencing their structure. A Habitat Suitability Model is run in the fourth chapter to map the distribution of areas suitable for the presence of deep-water oyster reefs in the Adriatic-Ionian area. The fifth chapter explores the mesophotic zone in the northern Gulf of Mexico providing its spatial and vertical extension of the mesophotic zone and information on the diversity associated with mesophotic ecosystems.
Resumo:
Gastrointestinal stromal tumors (GIST) are the most common di tumors of the gastrointestinal tract, arising from the interstitial cells of Cajal (ICCs) or their precursors. The vast majority of GISTs (75–85% of GIST) harbor KIT or PDGFRA mutations. A small percentage of GIST (about 10‐15%) do not harbor any of these driver mutations and have historically been called wild-type (WT). Among them, from 20% to 40% show loss of function of the succinate dehydrogenase complex (SDH), also defined as SDH‐deficient GIST. SDH-deficient GISTs display distinctive clinical and pathological features, and can be sporadic or associated with Carney triad or Carney-Stratakis syndrome. These tumors arise most frequently in the stomach with predilection to distal stomach and antrum, have a multi-nodular growth, display a histological epithelioid phenotype, and present frequent lympho-vascular invasion. Occurrence of lymph node metastases and indolent course are representative features of SDH-deficient GISTs. This subset of GIST is known for the immunohistochemical loss of succinate dehydrogenase subunit B (SDHB), which signals the loss of function of the entire SDH-complex. The overall aim of my PhD project consists of the comprehensive characterization of SDH deficient GIST. Throughout the project, clinical, molecular and cellular characterizations were performed using next-generation sequencing technologies (NGS), that has the potential to allow the identification of molecular patterns useful for the diagnosis and development of novel treatments. Moreover, while there are many different cell lines and preclinical models of KIT/PDGFRA mutant GIST, no reliable cell model of SDH-deficient GIST has currently been developed, which could be used for studies on tumor evolution and in vitro assessments of drug response. Therefore, another aim of this project was to develop a pre-clinical model of SDH deficient GIST using the novel technology of induced pluripotent stem cells (iPSC).
Resumo:
Inverse problems are at the core of many challenging applications. Variational and learning models provide estimated solutions of inverse problems as the outcome of specific reconstruction maps. In the variational approach, the result of the reconstruction map is the solution of a regularized minimization problem encoding information on the acquisition process and prior knowledge on the solution. In the learning approach, the reconstruction map is a parametric function whose parameters are identified by solving a minimization problem depending on a large set of data. In this thesis, we go beyond this apparent dichotomy between variational and learning models and we show they can be harmoniously merged in unified hybrid frameworks preserving their main advantages. We develop several highly efficient methods based on both these model-driven and data-driven strategies, for which we provide a detailed convergence analysis. The arising algorithms are applied to solve inverse problems involving images and time series. For each task, we show the proposed schemes improve the performances of many other existing methods in terms of both computational burden and quality of the solution. In the first part, we focus on gradient-based regularized variational models which are shown to be effective for segmentation purposes and thermal and medical image enhancement. We consider gradient sparsity-promoting regularized models for which we develop different strategies to estimate the regularization strength. Furthermore, we introduce a novel gradient-based Plug-and-Play convergent scheme considering a deep learning based denoiser trained on the gradient domain. In the second part, we address the tasks of natural image deblurring, image and video super resolution microscopy and positioning time series prediction, through deep learning based methods. We boost the performances of supervised, such as trained convolutional and recurrent networks, and unsupervised deep learning strategies, such as Deep Image Prior, by penalizing the losses with handcrafted regularization terms.
Resumo:
Bioelectronic interfaces have significantly advanced in recent years, offering potential treatments for vision impairments, spinal cord injuries, and neurodegenerative diseases. However, the classical neurocentric vision drives the technological development toward neurons. Emerging evidence highlights the critical role of glial cells in the nervous system. Among them, astrocytes significantly influence neuronal networks throughout life and are implicated in several neuropathological states. Although they are incapable to fire action potentials, astrocytes communicate through diverse calcium (Ca2+) signalling pathways, crucial for cognitive functions and brain blood flow regulation. Current bioelectronic devices are primarily designed to interface neurons and are unsuitable for studying astrocytes. Graphene, with its unique electrical, mechanical and biocompatibility properties, has emerged as a promising neural interface material. However, its use as electrode interface to modulate astrocyte functionality remains unexplored. The aim of this PhD work was to exploit Graphene-oxide (GO) and reduced GO (rGO)-coated electrodes to control Ca2+ signalling in astrocytes by electrical stimulation. We discovered that distinct Ca2+dynamics in astrocytes can be evoked, in vitro and in brain slices, depending on the conductive/insulating properties of rGO/GO electrodes. Stimulation by rGO electrodes induces intracellular Ca2+ response with sharp peaks of oscillations (“P-type”), exclusively due to Ca2+ release from intracellular stores. Conversely, astrocytes stimulated by GO electrodes show slower and sustained Ca2+ response (“S-type”), largely mediated by external Ca2+ influx through specific ion channels. Astrocytes respond faster than neurons and activate distinct G-Protein Coupled Receptor intracellular signalling pathways. We propose a resistive/insulating model, hypothesizing that the different conductivity of the substrate influences the electric field at the cell/electrolyte or cell/material interfaces, favouring, respectively, the Ca2+ release from intracellular stores or the extracellular Ca2+ influx. This research provides a simple tool to selectively control distinct Ca2+ signals in brain astrocytes in neuroscience and bioelectronic medicine.
Resumo:
We study the Hamiltonian and Lagrangian constraints of the Polyakov string. The gauge fixing at the Hamiltonian and Lagrangian level is also studied.
Resumo:
Strawberries represent the main source of ellagic acid derivatives in the Brazilian diet, corresponding to more than 50% of all phenolic compounds found in the fruit. There is a particular interest in the determination of the ellagic acid content in fruits because of possible chemopreventive benefits. In the present study, the potential health benefits of purified ellagitannins from strawberries were evaluated in relation to the antiproliferative activity and in vitro inhibition of alpha-amylase, alpha-glucosidase, and angiotensin I-converting enzyme (ACE) relevant for potential management of hyperglycemia and hypertension. Therefore, a comparison among ellagic acid, purified ellagitannins, and a strawberry extract was done to evaluate the possible synergistic effects of phenolics. In relation to the antiproliferative activity, it was observed that ellagic acid had the highest percentage inhibition of cell proliferation. The strawberry extract had lower efficacy in inhibiting the cell proliferation, indicating that in the case of this fruit there is no synergism. Purified ellagitannins had high alpha-amylase and ACE inhibitory activities. However, these compounds had low alpha-glucosidase inhibitory activity. These results suggested that the ellagitannins and ellagic acid have good potential for the management of hyperglycemia and hypertension linked to type 2 diabetes. However, further studies with animal and human models are needed to advance the in vitro assay-based biochemical rationale from this study.