968 resultados para Community composition


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of abandoned mine drainage (AMD) on streams and responses to remediation efforts were studied using three streams (AMD-impacted, remediated, reference) in both the anthracite and the bituminous coal mining regions of Pennsylvania (USA). Response variables included ecosystem function as well as water chemistry and macroinvertebrate community composition. The bituminous AMD stream was extremely acidic with high dissolved metals concentrations, a prolific mid-summer growth of the filamentous alga, Mougeotia, and .10-fold more chlorophyll than the reference stream. The anthracite AMD stream had a higher pH, substrata coated with iron hydroxide(s), and negligible chlorophyll. Macroinvertebrate communities in the AMD streams were different from the reference streams, the remediated streams, and each other. Relative to the reference stream, the AMD stream(s) had (1) greater gross primary productivity (GPP) in the bituminous region and undetectable GPP in the anthracite region, (2) greater ecosystem respiration in both regions, (3) greatly reduced ammonium uptake and nitrification in both regions, (4) lower nitrate uptake in the bituminous (but not the anthracite) region, (5) more rapid phosphorus removal from the water column in both regions, (6) activities of phosphorus-acquiring, nitrogenacquiring, and hydrolytic-carbon-acquiring enzymes that indicated extreme phosphorus limitation in both regions, and (7) slower oak and maple leaf decomposition in the bituminous region and slower oak decomposition in the anthracite region. Remediation brought chlorophyll concentrations and GPP nearer to values for respective reference streams, depressed ecosystem respiration, restored ammonium uptake, and partially restored nitrification in the bituminous (but not the anthracite) region, reduced nitrate uptake to an undetectable level, restored phosphorus uptake to near normal rates, and brought enzyme activities more in line with the reference stream in the bituminous (but not the anthracite) region. Denitrification was not detected in any stream. Water chemistry and macroinvertebrate community structure analyses capture the impact of AMD at the local reach scale, but functional measures revealed that AMD has ramifications that can cascade to downstream reaches and perhaps to receiving estuaries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fungi are important members of soil microbial communities with a crucial role in biogeochemical processes. Although soil fungi are known to be highly diverse, little is known about factors influencing variations in their diversity and community structure among forests dominated by the same tree species but spread over different regions and under different managements. We analyzed the soil fungal diversity and community composition of managed and unmanaged European beech dominated forests located in three German regions, the Schwäbische Alb in Southwestern, the Hainich-Dün in Central and the Schorfheide Chorin in the Northeastern Germany, using internal transcribed spacer (ITS) rDNA pyrotag sequencing. Multiple sequence quality filtering followed by sequence data normalization revealed 1655 fungal operational taxonomic units. Further analysis based on 722 abundant fungal OTUs revealed the phylum Basidiomycota to be dominant (54%) and its community to comprise 71.4% of ectomycorrhizal taxa. Fungal community structure differed significantly (p≤0.001) among the three regions and was characterized by non-random fungal OTUs co-occurrence. Soil parameters, herbaceous understory vegetation, and litter cover affected fungal community structure. However, within each study region we found no difference in fungal community structure between management types. Our results also showed region specific significant correlation patterns between the dominant ectomycorrhizal fungal genera. This suggests that soil fungal communities are region-specific but nevertheless composed of functionally diverse and complementary taxa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Invasive and exotic species present a serious threat to the health and sustainability of natural ecosystems. These species often benefit from anthropogenic activities that aid their introduction and dispersal. This dissertation focuses on invasion dynamics of the emerald ash borer, native to Asia, and European earthworms. These species have shown detrimental impacts in invaded forest ecosystems across the Great Lakes region, and continue to spread via human-assisted long distance dispersal and by natural modes of dispersal into interior forests from areas of introduction. Successful forest management requires that the impact and effect of invasive species be considered and incorporated into management plans. Understanding patterns and constraints of introduction, establishment, and spread will aid in this effort. To assist in efforts to locate introduction points of emerald ash borer, a multicriteria risk model was developed to predict the highest risk areas. Important parameters in the model were road proximity, land cover type, and campground proximity. The model correctly predicted 85% of known emerald ash borer invasion sites to be at high risk. The model’s predictions across northern Michigan can be used to focus and guide future monitoring efforts. Similar modeling efforts were applied to the prediction of European earthworm invasion in northern Michigan forests. Field sampling provided a means to improve upon modeling efforts for earthworms to create current and future predictions of earthworm invasion. Those sites with high soil pH and high basal area of earthworm preferred overstory species (such as basswood and maples) had the highest likelihood of European earthworm invasion. Expanding beyond Michigan into the Upper Great Lakes region, earthworm populations were sampled across six National Wildlife Refuges to identify potential correlates and deduce specific drivers and constraints of earthworm invasion. Earthworm communities across all refuges were influenced by patterns of anthropogenic activity both within refuges and in surrounding ecoregions of study. Forest composition, soil pH, soil organic matter, anthropogenic cover, and agriculture proximity also proved to be important drivers of earthworm abundance and community composition. While there are few management options to remove either emerald ash borer or European earthworms from forests after they have become well established, prevention and early detection are important and can be beneficial. An improved understanding the factors controlling the distribution and invasion patterns of exotic species across the landscape will aid efforts to determine their consequences and generate appropriate forest management solutions to sustain ecosystem health in the presence of these invaders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anthropogenic activities continue to drive atmospheric CO2 and O3 concentrations to levels higher than during the pre-industrial era. Accumulating evidence indicates that both elevated CO2 and elevated O3 could modify the quantity and biochemistry of woody plant biomass. Anatomical properties of woody plants are largely influenced by the activity of the cambium and the growth characteristics of wood cells, which are in turn influenced by a range of environmental factors. Hence, alterations in the concentrations of atmospheric CO2 and / or O3 could also impact wood anatomical properties. Many fungi derive their metabolic resources for growth from plant litter, including woody tissue, and therefore modifications in the quantity, biochemistry and anatomical properties of woody plants in response to elevated CO2 and / or O3 could impact the community of wood-decaying fungi and rates of wood decomposition. Consequently carbon and nutrient cycling and productivity of terrestrial ecosystem could also be impacted. Alterations in wood structure and biochemistry of woody plants could also impact wood density and subsequently impact wood quality. This dissertation examined the long term effects of elevated CO2 and / or O3 on wood anatomical properties, wood density, wood-decaying fungi and wood decomposition of northern hardwood tree species at the Aspen Free-Air CO2 and O3 Enrichment (Aspen FACE) project, near Rhinelander, WI, USA. Anatomical properties of wood varied significantly with species and aspen genotypes and radial position within the stem. Elevated CO2 did not have significant effects on wood anatomical properties in trembling aspen, paper birch or sugar maple, except for marginally increasing (P < 0.1) the number of vessels per square millimeter. Elevated O3 marginally or significantly altered vessel lumen diameter, cell wall area and vessel lumen area proportions depending on species and radial position. In line with the modifications in the anatomical properties, elevated CO2 and O3, alone, significantly modified wood density but effects were species and / or genotype specific. However, the effects of elevated CO2 and O3, alone, on wood anatomical properties and density were ameliorated when in combination. Wood species had a much greater impact on the wood-decaying fungal community and initial wood decomposition rate than did growth or decomposition of wood in elevated CO2 and / or O3. Polyporales, Agaricales, and Russulales were the dominant orders of fungi isolated. Based on the current results, future higher levels of CO2 and O3 may have moderate effects on wood quality of northern hardwoods, but for utilization purposes these may not be considered significant. However, wood-decaying fungal community composition and decomposition of northern hardwoods may be altered via shifts in species and / or genotype composition under future higher levels of CO2 and O3.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding factors driving the ecology of N cycling microbial communities is of central importance for sustainable land use. In this study we report changes of abundance of denitrifiers, nitrifiers and nitrogen-fixing microorganisms (based on qPCR data for selected functional genes) in response to different land use intensity levels and the consequences for potential turnover rates. We investigated selected grassland sites being comparable with respect to soil type and climatic conditions, which have been continuously treated for many years as intensely used meadows (IM), intensely used mown pastures (IP) and extensively used pastures (EP), respectively. The obtained data were linked to above ground biodiversity pattern as well as water extractable fractions of nitrogen and carbon in soil. Shifts in land use intensity changed plant community composition from systems dominated by s-strategists in extensive managed grasslands to c-strategist dominated communities in intensive managed grasslands. Along the different types of land use intensity, the availability of inorganic nitrogen regulated the abundance of bacterial and archaeal ammonia oxidizers. In contrast, the amount of dissolved organic nitrogen determined the abundance of denitrifiers (nirS and nirK). The high abundance of nifH carrying bacteria at intensive managed sites gave evidence that the amounts of substrates as energy source outcompete the high availability of inorganic nitrogen in these sites. Overall, we revealed that abundance and function of microorganisms involved in key processes of inorganic N cycling (nitrification, denitrification and N fixation) might be independently regulated by different abiotic and biotic factors in response to land use intensity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is much interest in the identification of the main drivers controlling changes in the microbial community that may be related to sustainable land use. We examined the influence of soil properties and land-use intensity (N fertilization, mowing, grazing) on total phospholipid fatty acid (PLFA) biomass, microbial community composition (PLFA profiles) and activities of enzymes involved in the C, N, and P cycle. These relationships were examined in the topsoil of grasslands from three German regions (Schorfheide-Chorin (SCH), Hainich-Dun (HAI), Schwabische Alb (ALB)) with different parent material. Differences in soil properties explained 60% of variation in PLFA data and 81% of variation in enzyme activities across regions and land-use intensities. Degraded peat soils in the lowland areas of the SCH with high organic carbon (OC) concentrations and sand content contained lower PLFA biomass, lower concentrations of bacterial, fungal, and arbuscular mycorrhizal PLFAs, but greater enzyme activities, and specific enzyme activities (per unit microbial biomass) than mineral soils in the upland areas of the HAI and ALB, which are finer textured, drier, and have smaller OC concentrations. After extraction of variation that originated from large-scale differences among regions and differences in land-use intensities between plots, soil properties still explained a significant amount of variation in PLFA data (34%) and enzyme activities (60%). Total PLFA biomass and all enzyme activities were mainly related to OC concentration, while relative abundance of fungi and fungal to bacterial ratio were mainly related to soil moisture. Land-use intensity (LUI) significantly decreased the soil C:N ratio. There was no direct effect of LUI on total PLFA biomass, microbial community composition, N and P cycling enzyme activities independent of study region and soil properties. In contrast, the activities and specific activities of enzymes involved in the C cycle increased significantly with LUI independent of study region and soil properties, which can have impact on soil organic matter decomposition and nutrient cycling. Our findings demonstrate that microbial biomass and community composition as well as enzyme activities are more controlled by soil properties than by grassland management at the regional scale. (C) 2013 Elsevier B.V: All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Subalpine grasslands are highly seasonal environments and likely subject to strong variability in nitrogen (N) dynamics. Plants and microbes typically compete for N acquisition during the growing season and particularly at plant peak biomass. During snowmelt, plants could potentially benefit from a decrease in competition by microbes, leading to greater plant N uptake associated with active growth and freeze-thaw cycles restricting microbial growth. In managed subalpine grasslands, we expect these interactions to be influenced by recent changes in agricultural land use, and associated modifications in plant and microbial communities. At several subalpine grasslands in the French Alps, we added pulses of 15N to the soil at the end of snowmelt, allowing us to compare the dynamics of inorganic N uptake in plants and microbes during this period with that previously reported at the peak biomass in July. In all grasslands, while specific shoot N translocation (per g of biomass) of dissolved inorganic nitrogen (DIN) was two to five times greater at snowmelt than at peak biomass, specific microbial DIN uptakes were similar between the two sampling dates. On an area basis, plant communities took more DIN than microbial communities at the end of snowmelt when aboveground plant biomasses were at least two times lower than at peak biomass. Consequently, inorganic N partitioning after snowmelt switches in favor of plant communities, allowing them to support their growing capacities at this period of the year. Seasonal differences in microbial and plant inorganic N-related dynamics were also affected by past (terraced vs. unterraced) rather than current (mown vs. unmown) land use. In terraced grasslands, microbial biomass N remained similar across seasons, whereas in unterraced grasslands, microbial biomass N was higher and microbial C : N lower at the end of snowmelt as compared to peak biomass. Further investigations on microbial community composition and their organic N uptake dynamics are required to better understand the decrease in microbial DIN uptake.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Temporal dynamics create unique and often ephemeral conditions that can influence soil microbial biogeography at different spatial scales. This study investigated the relation between decimeter to meter spatial variability of soil microbial community structure, plant diversity, and soil properties at six dates from April through November. We also explored the robustness of these interactions over time. An historically unfertilized, unplowed grassland in southwest Germany was selected to characterize how seasonal variability in the composition of plant communities and substrate quality changed the biogeography of soil microorganisms at the plot scale (10 m x 10 m). Microbial community spatial structure was positively correlated with the local environment, i.e. physical and chemical soil properties, in spring and autumn, while the density and diversity of plants had an additional effect in the summer period. Spatial relationships among plant and microbial communities were detected only in the early summer and autumn periods when aboveground biomass increase was most rapid and its influence on soil microbial communities was greatest due to increased demand by plants for nutrients. Individual properties exhibited varying degrees of spatial structure over the season. Differential responses of Gram positive and Gram negative bacterial communities to seasonal shifts in soil nutrients were detected. We concluded that spatial distribution patterns of soil microorganisms change over a season and that chemical soil properties are more important controlling factors than plant density and diversity. Finer spatial resolution, such as the mm to cm scale, as well as taxonomic resolution of microbial groups, could help determine the importance of plant species density, composition, and growth stage in shaping microbial community composition and spatial patterns. (C) 2014 The Authors. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ecosystems are faced with high rates of species loss which has consequences for their functions and services. To assess the effects of plant species diversity on the nitrogen (N) cycle, we developed a model for monthly mean nitrate (NO3-N) concentrations in soil solution in 0-30 cm mineral soil depth using plant species and functional group richness and functional composition as drivers and assessing the effects of conversion of arable land to grassland, spatially heterogeneous soil properties, and climate. We used monthly mean NO3-N concentrations from 62 plots of a grassland plant diversity experiment from 2003 to 2006. Plant species richness (1-60) and functional group composition (1-4 functional groups: legumes, grasses, non-leguminous tall herbs, non-leguminous small herbs) were manipulated in a factorial design. Plant community composition, time since conversion from arable land to grassland, soil texture, and climate data (precipitation, soil moisture, air and soil temperature) were used to develop one general Bayesian multiple regression model for the 62 plots to allow an in-depth evaluation using the experimental design. The model simulated NO3-N concentrations with an overall Bayesian coefficient of determination of 0.48. The temporal course of NO3-N concentrations was simulated differently well for the individual plots with a maximum plot-specific Nash-Sutcliffe Efficiency of 0.57. The model shows that NO3-N concentrations decrease with species richness, but this relation reverses if more than approx. 25 % of legume species are included in the mixture. Presence of legumes increases and presence of grasses decreases NO3-N concentrations compared to mixtures containing only small and tall herbs. Altogether, our model shows that there is a strong influence of plant community composition on NO3-N concentrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Major changes to rainfall regimes are predicted for the future but the effect of such changes on terrestrial ecosystem function is largely unknown. We created a rainfall manipulation experiment to investigate the effects of extreme changes in rainfall regimes on ecosystem functioning in a grassland system. We applied two rainfall regimes; a prolonged drought treatment (30 % reduction over spring and summer) and drought/downpour treatment (long periods of no rainfall interspersed with downpours), with an ambient control. Both rainfall manipulations included increased winter rainfall. We measured plant community composition, CO2 fluxes and soil nutrient availability. Plant species richness and cover were lower in the drought/downpour treatment, and showed little recovery after the treatment ceased. Ecosystem processes were less affected, possibly due to winter rainfall additions buffering reduced summer rainfall, which saw relatively small soil moisture changes. However, soil extractable P and ecosystem respiration were significantly higher in rainfall change treatments than in the control. This grassland appears fairly resistant, in the short term, to even the more extreme rainfall changes that are predicted for the region, although prolonged study is needed to measure longer-term impacts. Differences in ecosystem responses between the two treatments emphasise the variety of ecosystem responses to changes in both the size and frequency of rainfall events. Given that model predictions are inconsistent there is therefore a need to assess ecosystem function under a range of potential climate change scenarios.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seed predation impacts heavily on plant populations and community composition in grasslands. In particular, generalist seed predators may contribute to biotic resistance, i.e. the ability of resident species in a community to reduce the success of non-indigenous plant invaders. However, little is known of predators' preferences for seeds of indigenous or non-indigenous plant species or how seed predation varies across communities. We hypothesize that seed predation does not differ between indigenous and non-indigenous plant species and that seed predation is positively related to plant species diversity in the resident community. The seed removal of 36 indigenous and non-indigenous grassland species in seven extensively or intensively managed hay meadows across Switzerland covering a species-richness gradient of 18-50 plant species per unit area (c. 2 m(2)) was studied. In mid-summer 2011, c. 24,000 seeds were exposed to predators in Petri dishes filled with sterilized soil, and the proportions of seeds removed were determined after three days' exposure. These proportions varied among species (9.2-62.5%) and hay meadows (17.8-48.6%). Seed removal was not related to seed size. Moreover, it did not differ between indigenous and non-indigenous species, suggesting that mainly generalist seed predators were active. However, seed predation was positively related to plant species richness across a gradient in the range of 18-38 species per unit area, representing common hay meadows in Switzerland. Our results suggest that generalist post-dispersal seed predation contributes to biotic resistance and may act as a filter to plant invasion by reducing the propagule pressure of non-local plant species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many studies have examined whether communities are structured by random or deterministic processes, and both are likely to play a role, but relatively few studies have attempted to quantify the degree of randomness in species composition. We quantified, for the first time, the degree of randomness in forest bird communities based on an analysis of spatial autocorrelation in three regions of Germany. The compositional dissimilarity between pairs of forest patches was regressed against the distance between them. We then calculated the y-intercept of the curve, i.e. the ‘nugget’, which represents the compositional dissimilarity at zero spatial distance. We therefore assume, following similar work on plant communities, that this represents the degree of randomness in species composition. We then analysed how the degree of randomness in community composition varied over time and with forest management intensity, which we expected to reduce the importance of random processes by increasing the strength of environmental drivers. We found that a high portion of the bird community composition could be explained by chance (overall mean of 0.63), implying that most of the variation in local bird community composition is driven by stochastic processes. Forest management intensity did not consistently affect the mean degree of randomness in community composition, perhaps because the bird communities were relatively insensitive to management intensity. We found a high temporal variation in the degree of randomness, which may indicate temporal variation in assembly processes and in the importance of key environmental drivers. We conclude that the degree of randomness in community composition should be considered in bird community studies, and the high values we find may indicate that bird community composition is relatively hard to predict at the regional scale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Herbivory can affect plant community composition and diversity by removing biomass and reducing light competition. Herbivory may particularly benefit low growing species such as bryophytes, which are frequently limited by light competition. Gastropods are important herbivores of seed plants and cryptogams, furthermore, they can disperse propagules such as seeds and spores via endozoochory. However, whether gastropod herbivory can reduce the dominance of vascular plants and thereby promote the germination and establishment of endozoochorously dispersed bryophyte spores has never been tested experimentally. Moreover, it is unclear whether these possible interacting effects can influence bryophyte species richness. Here, we tested for endozoochorous spore dispersal by slugs, in combination with sowing of vascular plants, in a fully factorial common garden experiment. Enclosures contained either slugs previously fed with bryophyte sporophytes, control slugs, or no slugs. After 21 days the bryophyte cover was on average 2.8 times higher (3.9 versus 1.4) and after eight months the bryophyte species richness 2.6 times higher (5.8 versus 2.2) in enclosures containing slugs previously fed with bryophyte sporophytes than in the other treatments. Furthermore, after eight months high vascular plant cover reduced bryophyte diversity. On average enclosures without seed sowing harboured 1.6 times more bryophyte species than the ones with seed sowing (4.2 versus 2.6), indicating competitive effects of vascular plants on bryophytes. Our findings suggest that slugs are important dispersal vectors for bryophytes and that they can increase bryophyte populations and maintain bryophyte diversity by reducing the dominance of vascular plants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ecological research and monitoring of lacustrine ecosystems often requires a whole-lake assessment of fish communities. Gillnet sampling offers an efficient means of estimating abundance, biomass and fish community composition. However the choice of gillnet sampling protocol may influence lake characterization via physical properties of the nets and allocation of sampling effort between littoral, benthic and pelagic habitats. This paper compares two commonly used, whole-lake sampling protocols applied across 17 prealpine, subalpine and alpine European lakes ranging widely in size, depth and altitude to determine their relative strength for research and management applications. Effort-corrected estimates of abundance, biomass and species richness were correlated between the protocols and both distinguished the trout-dominated alpine communities from subalpine and prealpine lakes dominated by whitefish and perch. A considerable amount of variance remained unexplained between the two protocols however, which seemed to correspond with differences in the proportion of effort among benthic and pelagic habitats. We suggest that both the European standard (CEN) and vertical (VERT) netting protocols are suitable for assessing ecological status and monitoring changes in lake fish communities through time. However the details of each protocol should be kept in mind when comparing fish communities between lakes. Mesh sizes used in CEN nets produce a more even size frequency distribution, suggesting that this protocol is most appropriate for assessing size structure of fish assemblages. The high proportion of netting effort in benthic habitats shallower than 70 m depth under the CEN protocol means that, particularly in larger lakes, outcomes will be disproportionately influenced by the ecological condition of this habitat. The VERT protocol presumably provides a more accurate estimate of whole-lake CPUE and community composition because effort, in terms of net area, is more evenly distributed across the entire volume of the lake. This is particularly important in large and deep lakes where pelagic habitats occupy a high proportion of the lake volume.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The European standard for gillnetsampling to characterize lake fish communities stratifies sampling effort (i.e., number of nets) within depth strata. Nets to sample benthic habitats are randomly distributed throughout the lake within each depth strata. Pelagic nets are also stratified by depth, but are set only at the deepest point of the lake. Multiple authors have suggested that this design under-represents pelagic habitats, resulting in estimates of whole-lake CPUE and community composition which are disproportionately influenced by ecological conditions of littoral and benthic habitats. To address this issue, researchers have proposed estimating whole-lake CPUE by weighting the catch rate in each depth-compartment by the proportion of the volume of the lake contributed by the compartment. Our study aimed to assess the effectiveness of volume-weighting by applying it to fish communities sampled according to the European standard (CEN), and by a second whole-lake gillnetting protocol (VERT), which prescribes additional fishing effort in pelagic habitats. We assume that convergence between the protocols indicates that volume-weighting provides a more accurate estimate of whole-lake catch rate and community composition. Our results indicate that volume-weighting improves agreement between the protocols for whole-lake total CPUE, estimated proportion of perch and roach and the overall fish community composition. Discrepancies between the protocols remaining after volume-weighting maybe because sampling under the CEN protocol overlooks horizontal variation in pelagic fish communities. Analyses based on multiple pelagic-set VERT nets identified gradients in the density and biomass of pelagic fish communities in almost half the lakes that corresponded with the depth of water at net-setting location and distance along the length of a lake. Additional CEN pelagic sampling effort allocated across water depths and distributed throughout the lake would therefore help to reconcile differences between the sampling protocols and, in combination with volume-weighting, converge on a more accurate estimate of whole-lake fish communities.