960 resultados para Colored microspheres
Microspheres of poly(e-caprolactone) loaded holmium-165: morphology and thermal degradation behavior
Resumo:
Poly(lactide-co-glycolide), or PLGA, microspheres offer a widely-studied biodegradable option for controlled release of therapeutics. An array of fabrication methodologies have been developed to produce these microspheres with the capacity to encapsulate therapeutics of various types; and produce microspheres of a wide range of sizes for different methods of delivery. The encapsulation, stability, and release profiles of therapeutic release based on physical and thermodynamic properties has also been studied and modeled to an extent. Much research has been devoted to tailoring formulations for improved therapeutic encapsulation and stability as well as selective release profiles. Despite the breadth of available research on PLGA microspheres, further analysis of fundamental principles regarding the microsphere degradation, formation, and therapeutic encapsulation is necessary. This work aims to examine additional fundamental principles related to PLGA microsphere formation and degradation from solvent-evaporation of preformed polymer. In particular, mapping the development of the acidic microenvironment inside the microsphere during degradation and erosion is discussed. Also, the effect of macromolecule size and conformation is examined with respect to microsphere diameter and PLGA molecular weight. Lastly, the effects of mechanical shearing and protein exposure to aqueous media during microsphere formation are examined. In an effort to better understand the acidic microenvironment development across the microsphere diameter, pH sensitive dye conjugated to protein that undergoes conformational change at different acidic pH values was encapsulated in PLGA microspheres of diameters ranging from 40 µm to 80 µm, and used in conjunction with fluorescence resonance energy transfer to measure the radial pH change in the microspheres. Qualitative analysis of confocal micrographs was used to correlate fluorescence intensity with pH value, and obtain the radial pH across the center of the microsphere. Therapeutic encapsulation and release from polymeric microspheres is governed by an interconnected variety of factors, including the therapeutic itself. The globular protein bovine serum albumin, and the elongated and significantly smaller enzyme, lysozyme, were encapsulated in PLGA microspheres ranging from 40 µm to 80 µm in diameter. The initial surface morphology upon microsphere formation, release profiles, and microsphere erosion characteristics were explored in an effort to better understand the effect of protein size, conformation, and known PLGA interaction on the formation and degradation of PLGA microspheres and macromolecule release, with respect to PLGA molecular weight and microsphere diameter. In addition to PLGA behavior and macromolecule behavior, the effect of mechanical stresses during fabrication was examined. Two similar solvent extraction techniques were compared for the fabrication of albumin loaded microspheres. In particular, the homogeneity of the microspheres as well as capacity to retain encapsulated albumin were compared. This preliminary study paves the way for a more rigorous treatment of the effect of mechanical forces present in popular microsphere fabrication. Several factors affecting protein release from PLGA microspheres are examined herein. The technique explored for spatial resolution of the pH inside the microsphere proved mildly effective in producing a reliable method of mapping microsphere pH changes. However, notable trends with respect to microsphere size, PLGA molecular weight, and microsphere porosity were observed. Proposed methods of improving spatial resolution of the acidic microenvironment are also provided. With respect to microsphere formation, studies showed that albumin and lysozyme had little effect on the internal homogeneity of the microsphere. Rather, ionic interactions with PLGA played a more significant role in the encapsulation and release of each macromolecule. Studies also showed that higher instances of mechanical stress led to less homogeneous microspheres with lower protein encapsulation. This suggests that perhaps instead of or in addition to modifying the microsphere formation formulation, the fabrication technique itself should be more closely considered in achieving homogeneous microspheres with desired loading.
Resumo:
Porous polymer particles are used in an extraordinarily wide range of advanced and everyday applications, from combinatorial chemistry, solid-phase organic synthesis and polymer-supported reagents, to environmental analyses and the purification of drinking water. The installation and exploitation of functional chemical handles on the particles is often a prerequisite for their successful exploitation, irrespective of the application and the porous nature of the particles. New methodology for the chemical modification of macroreticular polymers is the primary focus of the work presented in this thesis. Porous polymer microspheres decorated with a diverse range of functional groups were synthesised by the post-polymerisation chemical modification of beaded polymers via olefin cross metathesis. The polymer microspheres were prepared by the precipitation polymerisation of divinylbenzene in porogenic (pore-forming) solvents; the olefin cross-metathesis (CM) functionalisation reactions exploited the pendent (polymer-bound) vinyl groups that were not consumed by polymerisation. Olefin CM reactions involving the pendent vinyl groups were performed in dichloromethane using second-generation Grubbs catalyst (Grubbs II), and a wide range of coupling partners used. The results obtained indicate that high quality, porous polymer microspheres synthesised by precipitation polymerisation in near-θ solvents can be functionalised by olefin CM under very mild conditions to install a diverse range of chemical functionalities into a common polydivinylbenzene precursor. Gel-type polymer microspheres were prepared by the precipitation copolymerisation reaction of divinylbenzene and allyl methacrylate in neat acetonitrile. The unreacted pendent vinyl groups that were not consumed by polymerisation were subjected to internal and external olefin metathesis-based hypercrosslinking reactions. Internal hypercrosslinking was carried out by using ring-closing metathesis (RCM) reactions in toluene using Grubbs II catalyst. Under these conditions, hypercrosslinked (HXL) polymers with specific surface areas around 500 m2g-1 were synthesised. External hypercrosslinking was attempted by using CM/RCM in the presence of a multivinyl coupling partner in toluene using second-generation Hoveyda-Grubbs catalyst. The results obtained indicate that no HXL polymers were obtained. However, during the development of this methodology, a new type of polymerisation was discovered with tetraallylorthosilicate as monomer.
Resumo:
Polyhydroxybutyrate-co-hydroxyvalerate microspheres (PHBV-MS) were prepared as a delivery system for the herbicide atrazine (ATZ). Characterization of the system included investigation of in vitro release properties and genotoxicity. ATZ - PHBV-MS particle diameters showed a size distribution range of 1-13 mu m. Differential scanning calorimetry analyses indicated that ATZ was associated with the PHBV microparticles. The release profiles showed a different release behavior for the pure herbicide in solution, as compared with that containing ATZ-loaded PHBV-MS. Korsmeyer-Peppas model analyses showed that atrazine release from the microparticles occurred by a combination of diffusion through the matrix and partial diffusion through water-filled pores of the PHBV microparticles. A Lactuca sativa test result showed that the genotoxicity of ATZ-loaded PHBV-MP was decreased in relation to ATZ alone. The results demonstrate a viable biodegradable herbicide release system using atrazine for agrochemical purposes.
Resumo:
Many efforts are currently oriented toward extracting more information from ocean color than the chlorophyll a concentration. Among biological parameters potentially accessible from space, estimates of phytoplankton cell size and light absorption by colored detrital matter (CDM) would lead to an indirect assessment of major components of the organic carbon pool in the ocean, which would benefit oceanic carbon budget models. We present here 2 procedures to retrieve simultaneously from ocean color measurements in a limited number of bands, magnitudes, and spectral shapes for both light absorption by CDM and phytoplankton, along with a size parameter for phytoplankton. The performance of the 2 procedures was evaluated using different data sets that correspond to increasing uncertainties: ( 1) measured absorption coefficients of phytoplankton, particulate detritus, and colored dissolved organic matter ( CDOM) and measured chlorophyll a concentrations and ( 2) SeaWiFS upwelling radiance measurements and chlorophyll a concentrations estimated from global algorithms. In situ data were acquired during 3 cruises, differing by their relative proportions in CDM and phytoplankton, over a continental shelf off Brazil. No local information was introduced in either procedure, to make them more generally applicable. Over the study area, the absorption coefficient of CDM at 443 nm was retrieved from SeaWiFS radiances with a relative root mean square error (RMSE) of 33%, and phytoplankton light absorption coefficients in SeaWiFS bands ( from 412 to 510 nm) were retrieved with RMSEs between 28% and 33%. These results are comparable to or better than those obtained by 3 published models. In addition, a size parameter of phytoplankton and the spectral slope of CDM absorption were retrieved with RMSEs of 17% and 22%, respectively. If these methods are applied at a regional scale, the performances could be substantially improved by locally tuning some empirical relationships.
Resumo:
A reprint from the Annual report of the U. S. Department of agriculture, 1885.
Resumo:
Purpose: To prepare and evaluate floating microspheres of curcumin for prolonged gastric residence and to study their effect on alloxan-induced diabetic rats. Methods: Floating microsphere were prepared by emulsion-solvent diffusion method, using hydroxylpropyl methylcellulose, chitosan and Eudragit S 100 polymer in varying proportions. Ethanol/dichloromethane blend was used as solvent in a ratio of 1:1. The floating microspheres were evaluated for flow properties, particle size, incorporation efficiency, as well as in-vitro floatability and drug release. The anti-diabetic activity of the floating microspheres of batch FM4 was performed on alloxaninduced diabetic rats. Result: The floating microspheres had particle size, buoyancy, drug entrapment efficiency and yield in the ranges of 255.32 - 365.65 μm, 75.58 - 89.59, 72.6 - 83.5, and 60.46 - 80.02 %, respectively. Maximum drug release after 24 h was 82.62 % for formulation FM4 and 73.879, 58.613 and 46.106 % for formulations FM1, FM2, and FM3 respectively. In-vivo data obtained over a 120-h period indicate that curcumin floating microspheres from batch FM4 showed the better glycemic control than control and a commercial brand of the drug. Conclusion: The developed floating curcumin delivery system seems economical and effective in diabetes management in rats, and enhances the bioavailability of the drug.
Resumo:
Liver cancer accounts for nearly 10% of all cancers in the US. Intrahepatic Arterial Radiomicrosphere Therapy (RMT), also known as Selective Internal Radiation Treatment (SIRT), is one of the evolving treatment modalities. Successful patient clinical outcomes require suitable treatment planning followed by delivery of the microspheres for therapy. The production and in vitro evaluation of various polymers (PGCD, CHS and CHSg) microspheres for a RMT and RMT planning are described. Microparticles with a 30±10 µm size distribution were prepared by emulsion method. The in vitro half-life of the particles was determined in PBS buffer and porcine plasma and their potential application (treatment or treatment planning) established. Further, the fast degrading microspheres (≤ 48 hours in vitro half-life) were labeled with 68Ga and/or 99mTc as they are suitable for the imaging component of treatment planning, which is the primary emphasis of this dissertation. Labeling kinetics demonstrated that 68Ga-PGCD, 68Ga-CHSg and 68Ga-NOTA-CHSg can be labeled with more than 95% yield in 15 minutes; 99mTc-PGCD and 99mTc-CHSg can also be labeled with high yield within 15-30 minutes. In vitro stability after four hours was more than 90% in saline and PBS buffer for all of them. Experiments in reconstituted hemoglobin lysate were also performed. Two successful imaging (RMT planning) agents were found: 99mTc-CHSg and 68Ga-NOTA-CHSg. For the 99mTc-PGCD a successful perfusion image was obtained after 10 minutes, however the in vivo degradation was very fast (half-life), releasing the 99mTc from the lungs. Slow degrading CHS microparticles (> 21 days half-life) were modified with p-SCN-b-DOTA and labeled with 90Y for production of 90Y-DOTA-CHS. Radiochemical purity was evaluated in vitro and in vivo showing more than 90% stability after 72 and 24 hours respectively. All agents were compared to their respective gold standards (99mTc-MAA for 68Ga-NOTA-CHSg and 99mTc-CHSg; 90Y-SirTEX for 90Y-DOTA-CHS) showing superior in vivo stability. RMT and RMT planning agents (Therapy, PET and SPECT imaging) were designed and successfully evaluated in vitro and in vivo.
Resumo:
Facial cosmetic procedures are increasingly requested, and dermal filler materials have been widely used as a nonsurgical option since the 1980s. However, injectable fillers have been implicated in local adverse reactions. Therefore, the aim of this article was to describe the use of fine needle aspiration cytology (FNAC) in the diagnosis of foreign-body reactions to the perioral injection of dermal fillers. A 69-year-old woman presented with a painful nodule on her right nasolabial fold. Intraoral FNAC was performed, and cytologic smears were examined under optical and polarized light microscopy, showing birefringent microspheres, confirming the diagnosis of an adverse reaction caused by polymethyl methacrylate filler. FNAC is a less invasive method to confirm the diagnosis of adverse reactions caused by perioral cosmetic dermal fillers.
Resumo:
This study was aimed at spray drying hydrolysed casein using gum Arabic as the carrier agent, in order to decrease the bitter taste. Three formulations with differing proportions of hydrolysed casein: gum Arabic (10:90, 20:80 and 30:70) were prepared and characterized. They were evaluated for their moisture content, water activity, hygroscopicity, dispersibility in water and in oil, particle size and distribution, particle morphology, thermal behaviour (DSC) and bitter taste by a trained sensory panel using a paired-comparison test (free samples vs. spray dried samples). The proportion of hydrolysed casein did not affect the morphology of the microspheres. The spray drying process increased product stability and modified the dissolution time, but had no effect on the ability of the material to dissolve in either water or oil. The sensory tests showed that the spray drying process using gum Arabic as the carrier was efficient in attenuating or masking the bitter taste of the hydrolysed casein.
Resumo:
It is well known that long term use of shampoo causes damage to human hair. Although the Lowry method has been widely used to quantify hair damage, it is unsuitable to determine this in the presence of some surfactants and there is no other method proposed in literature. In this work, a different method is used to investigate and compare the hair damage induced by four types of surfactants (including three commercial-grade surfactants) and water. Hair samples were immersed in aqueous solution of surfactants under conditions that resemble a shower (38 °C, constant shaking). These solutions become colored with time of contact with hair and its UV-vis spectra were recorded. For comparison, the amount of extracted proteins from hair by sodium dodecyl sulfate (SDS) and by water were estimated by the Lowry method. Additionally, non-pigmented vs. pigmented hair and also sepia melanin were used to understand the washing solution color and their spectra. The results presented herein show that hair degradation is mostly caused by the extraction of proteins, cuticle fragments and melanin granules from hair fiber. It was found that the intensity of solution color varies with the charge density of the surfactants. Furthermore, the intensity of solution color can be correlated to the amount of proteins quantified by the Lowry method as well as to the degree of hair damage. UV-vis spectrum of hair washing solutions is a simple and straightforward method to quantify and compare hair damages induced by different commercial surfactants.
Resumo:
Synthetic dyes are much used in processed foods. HPLC was applied to different types of snacks, such as colored cereals, chocolate confetti, chewing gums and candies for the determination of those additives. In the case of artificially colored breakfast cereals, 71% of the samples exceeded the allowed limits. Regarding the portions recommended for consumption by the makers of two of the samples, the amounts exceeded those allowed by the Brazilian legislation. In the case of chocolate confetti and candies none of the samples showed higher amounts than those allowed. However 37% of the chewing gum samples presented larger contents than the authorized ones, and one sample contained five times more synthetic dyes than allowed.
Resumo:
The covering of the soil is an agricultural practice that intends to control the harmful herbs, to reduce the losses of water by evaporation of the soil, and to facilitate the harvest and the commercialization, once the product is cleaner and healthier. However, when the soil is covered important microclimatic parameters are also altered, and consequently the germination of seeds, the growth of roots, the absorption of water and nutrients, the metabolic activity of the plants and the carbohydrates storage. The current trial intended to evaluate the effect of soil covering with blue colored film on consumptive water-use in a lettuce crop (Lactuca sativa, L.). The experiment was carried out in a plastic greenhouse in Araras - São Paulo State, Brazil from March 3rd, 2001 to May 5th, 2001. The consumptive water-use was measured through two weighing lysimeter installed inside the greenhouse. Crop spacing was 0.25 m x 0.25 m and the color of the film above soil was blue. Leaf area index (IAF), was measured six times (7; 14; 21; 28; 35; 40 days after transplant) and the water-use efficiency (EU) was measured at the end. The experimental design was subdivided portions with two treatments, bare soil and covered soil. The average consumptive water-use was 4.17 mm day-1 to the bare soil treatment and 3.11 mm day-1 to the covered soil treatment. The final leaf area index was 25.23 to the bare soil treatment and 24.39 to the covered soil treatment, and there was no statistical difference between then.
Resumo:
This ex vivo study evaluated dentin permeability of the root canal in the apical third of different human groups of teeth. Eighty teeth were used, 8 from each dental group: maxillary and mandibular central incisors, lateral incisors and canines, maxillary first premolars (buccal and palatal roots), mandibular first premolars, and maxillary and mandibular second premolars, totalizing 88 roots that were distributed in 11 groups. The root canals were instrumented, irrigated with 1% NaOCl and 15% EDTA. Roots were immersed in 10% copper sulfate for 30 min and then in 1% rubeanic acid alcohol solution for the same period; this chemical reaction reveals dentin permeability by the formation of copper rubeanate, which is a dark-colored compound. Semi-serial 100-µm-thick cross-sections were obtained from the apical third of the roots. Five sections of each apical third were washed, dehydrated, cleared and mounted on glass slides for examination under optical microscopy. The percentage of copper ion infiltration and the amount of tubular dentin were quantified by morphometric analysis. The penetration of copper ions in the apical third ranged from 4.60 to 16.66%. The mandibular central and lateral incisors presented the highest dentin permeability (16.66%), while the maxillary canines and mandibular second and first premolars presented the lowest dentin permeability (4.60%, 4.80% and 5.71%, respectively; p<0.001). The other teeth presented intermediate permeability. In conclusion, dye penetration into dentin tubules at the apical region is strongly dependent on the group of teeth evaluated.