961 resultados para Collagen cross linking
Resumo:
Apoptosis of pancreatic beta cells is implicated in the onset of type 1 and type 2 diabetes. Consequently, strategies aimed at increasing the resistance of beta cells toward apoptosis could be beneficial in the treatment of diabetes. RasGAP, a regulator of Ras and Rho GTPases, is an atypical caspase substrate, since it inhibits, rather than favors, apoptosis when it is partially cleaved by caspase-3 at position 455. The antiapoptotic signal generated by the partial processing of RasGAP is mediated by the N-terminal fragment (fragment N) in a Ras-phosphatidylinositol 3-kinase-Akt-dependent, but NF-kappaB-independent, manner. Further cleavage of fragment N at position 157 abrogates its antiapoptotic properties. Here we demonstrate that an uncleavable form of fragment N activates Akt, represses NF-kappaB activity, and protects the conditionally immortalized pancreatic insulinoma betaTC-tet cell line against various insults, including exposure to genotoxins, trophic support withdrawal, and incubation with inflammatory cytokines. Fragment N also induced Akt activity and protection against cytokine-induced apoptosis in primary pancreatic islet cells. Fragment N did not alter insulin cell content and insulin secretion in response to glucose. These data indicate that fragment N protects beta cells without affecting their function. The pathways regulated by fragment N are therefore promising targets for antidiabetogenic therapy.
Resumo:
Soluble MHC-peptide (pMHC) complexes induce intracellular calcium mobilization, diverse phosphorylation events, and death of CD8+ CTL, given that they are at least dimeric and co-engage CD8. By testing dimeric, tetrameric, and octameric pMHC complexes containing spacers of different lengths, we show that their ability to activate CTL decreases as the distance between their subunit MHC complexes increases. Remarkably, pMHC complexes containing long rigid polyproline spacers (> or =80 A) inhibit target cell killing by cloned S14 CTL in a dose- and valence-dependent manner. Long octameric pMHC complexes abolished target cell lysis, even very strong lysis, at nanomolar concentrations. By contrast, an altered peptide ligand antagonist was only weakly inhibitory and only at high concentrations. Long D(b)-gp33 complexes strongly and specifically inhibited the D(b)-restricted lymphocytic choriomeningitis virus CTL response in vitro and in vivo. We show that complications related to transfer of peptide from soluble to cell-associated MHC molecules can be circumvented by using covalent pMHC complexes. Long pMHC complexes efficiently inhibited CTL target cell conjugate formation by interfering with TCR-mediated activation of LFA-1. Such reagents provide a new and powerful means to inhibit Ag-specific CTL responses and hence should be useful to blunt autoimmune disorders such as diabetes type I.
Resumo:
Two types of hydrogel microspheres have been developed. Fast ionotropic gelation of sodium alginate (Na-alg) in the presence of calcium ions was combined with slow covalent cross-linking of poly(ethylene glycol) (PEG) derivatives. For the first type, the fast obtainable Ca-alg hydrogel served as spherical matrix for the simultaneously occurring covalent cross-linking of multi-arm PEG derivative. A two-component interpenetrating network was formed in one step upon extruding the mixture of the two polymers into the gelation bath. For the second type, heterobifunctional PEG was grafted onto Na-alg prior to gelation. Upon extrusion of the polymer solution into the gelation bath, fast Ca-alg formation ensured the spherical shape and was accompanied by cross-linker-free covalent cross-linking of the PEG side chains. Thus, one-component hydrogel microspheres resulted. We present the physical properties of the hydrogel microspheres and demonstrate the feasibility of cell microencapsulation for both types of polymer networks.
Resumo:
Cell motility is an essential process that depends on a coherent, cross-linked actin cytoskeleton that physically coordinates the actions of numerous structural and signaling molecules. The actin cross-linking protein, filamin (Fln), has been implicated in the support of three-dimensional cortical actin networks capable of both maintaining cellular integrity and withstanding large forces. Although numerous studies have examined cells lacking one of the multiple Fln isoforms, compensatory mechanisms can mask novel phenotypes only observable by further Fln depletion. Indeed, shRNA-mediated knockdown of FlnA in FlnB¿/¿ mouse embryonic fibroblasts (MEFs) causes a novel endoplasmic spreading deficiency as detected by endoplasmic reticulum markers. Microtubule (MT) extension rates are also decreased but not by peripheral actin flow, because this is also decreased in the Fln-depleted system. Additionally, Fln-depleted MEFs exhibit decreased adhesion stability that appears in increased ruffling of the cell edge, reduced adhesion size, transient traction forces, and decreased stress fibers. FlnA¿/¿ MEFs, but not FlnB¿/¿ MEFs, also show a moderate defect in endoplasm spreading, characterized by initial extension followed by abrupt retractions and stress fiber fracture. FlnA localizes to actin linkages surrounding the endoplasm, adhesions, and stress fibers. Thus we suggest that Flns have a major role in the maintenance of actin-based mechanical linkages that enable endoplasmic spreading and MT extension as well as sustained traction forces and mature focal adhesions.
Resumo:
The retinoid X receptor beta (RXR beta; H-2RIIBP) forms heterodimers with various nuclear hormone receptors and binds multiple hormone response elements, including the estrogen response element (ERE). In this report, we show that endogenous RXR beta contributes to ERE binding activity in nuclear extracts of the human breast cancer cell line MCF-7. To define a possible regulatory role of RXR beta regarding estrogen-responsive transcription in breast cancer cells, RXR beta and a reporter gene driven by the vitellogenin A2 ERE were transfected into estrogen-treated MCF-7 cells. RXR beta inhibited ERE-driven reporter activity in a dose-dependent and element-specific fashion. This inhibition occurred in the absence of the RXR ligand 9-cis retinoic acid. The RXR beta-induced inhibition was specific for estrogen receptor (ER)-mediated ERE activation because inhibition was observed in ER-negative MDA-MB-231 cells only following transfection of the estrogen-activated ER. No inhibition of the basal reporter activity was observed. The inhibition was not caused by simple competition of RXR beta with the ER for ERE binding, since deletion mutants retaining DNA binding activity but lacking the N-terminal or C-terminal domain failed to inhibit reporter activity. In addition, cross-linking studies indicated the presence of an auxiliary nuclear factor present in MCF-7 cells that contributed to RXR beta binding of the ERE. Studies using known heterodimerization partners of RXR beta confirmed that RXR beta/triiodothyronine receptor alpha heterodimers avidly bind the ERE but revealed the existence of another triiodothyronine-independent pathway of ERE inhibition. These results indicate that estrogen-responsive genes may be negatively regulated by RXR beta through two distinct pathways.
Resumo:
TWEAK, a TNF family ligand with pleiotropic cellular functions, was originally described as capable of inducing tumor cell death in vitro. TWEAK functions by binding its receptor, Fn14, which is up-regulated on many human solid tumors. Herein, we show that intratumoral administration of TWEAK, delivered either by an adenoviral vector or in an immunoglobulin Fc-fusion form, results in significant inhibition of tumor growth in a breast xenograft model. To exploit the TWEAK-Fn14 pathway as a therapeutic target in oncology, we developed an anti-Fn14 agonistic antibody, BIIB036. Studies described herein show that BIIB036 binds specifically to Fn14 but not other members of the TNF receptor family, induces Fn14 signaling, and promotes tumor cell apoptosis in vitro. In vivo, BIIB036 effectively inhibits growth of tumors in multiple xenograft models, including colon (WiDr), breast (MDA-MB-231), and gastric (NCI-N87) tumors, regardless of tumor cell growth inhibition response observed to BIIB036 in vitro. The anti-tumor activity in these cell lines is not TNF-dependent. Increasing the antigen-binding valency of BIB036 significantly enhances its anti-tumor effect, suggesting the contribution of higher order cross-linking of the Fn14 receptor. Full Fc effector function is required for maximal activity of BIIB036 in vivo, likely due to the cross-linking effect and/or ADCC mediated tumor killing activity. Taken together, the anti-tumor properties of BIIB036 validate Fn14 as a promising target in oncology and demonstrate its potential therapeutic utility in multiple solid tumor indications.
Resumo:
Thy-1, a cell adhesion molecule abundantly expressed in mammalian neurons, binds to a beta(3)-containing integrin on astrocytes and thereby stimulates the assembly of focal adhesions and stress fibers. Such events lead to morphological changes in astrocytes that resemble those occurring upon injury in the brain. Extracellular matrix proteins, typical integrin ligands, bind to integrins and promote receptor clustering as well as signal transduction events that involve small G proteins and cytoskeletal changes. Here we investigated the possibility that the cell surface protein Thy-1, when interacting with a beta(3)-containing integrin on astrocytes, could trigger signaling events similar to those generated by extracellular matrix proteins. DI-TNC(1) astrocytes were stimulated with Thy-1-Fc immobilized on beads, and increased RhoA activity was confirmed using an affinity precipitation assay. The effect of various inhibitors on the cellular response was also studied. The presence of Y-27632, an inhibitor of Rho kinase (p160ROCK), a key downstream effector of RhoA, significantly reduced focal adhesion and stress fiber formation induced by Thy-1. Similar effects were obtained when astrocytes were treated with C3 transferase, an inhibitor of RhoA. Alternatively, astrocytes were transfected with an expression vector encoding fusion proteins of enhanced green fluorescent protein with either the Rho-binding domain of Rhotekin, which blocks RhoA function, or the dominant-negative N19RhoA mutant. In both cases, Thy-1-induced focal adhesion formation was inhibited. Furthermore, we observed that RhoA activity after stimulation with soluble Thy-1-Fc molecule was augmented upon further cross-linking using protein A-Sepharose beads. The same was shown by cross-linking beta(3)-containing integrin with anti-beta(3) antibodies. Together, these results indicate that Thy-1-mediated astrocyte stimulation depended on beta(3) integrin clustering and the resulting increase in RhoA activity.
Resumo:
Superparamagnetic iron oxide nanoparticles (SPIONs) are in clinical use for disease detection by MRI. A major advancement would be to link therapeutic drugs to SPIONs in order to achieve targeted drug delivery combined with detection. In the present work, we studied the possibility of developing a versatile synthesis protocol to hierarchically construct drug-functionalized-SPIONs as potential anti-cancer agents. Our model biocompatible SPIONs consisted of an iron oxide core (9-10 nm diameter) coated with polyvinylalcohols (PVA/aminoPVA), which can be internalized by cancer cells, depending on the positive charges at their surface. To develop drug-functionalized-aminoPVA-SPIONs as vectors for drug delivery, we first designed and synthesized bifunctional linkers of varied length and chemical composition to which the anti-cancer drugs 5-fluorouridine or doxorubicin were attached as biologically labile esters or peptides, respectively. These functionalized linkers were in turn coupled to aminoPVA by amide linkages before preparing the drug-functionalized-SPIONs that were characterized and evaluated as anti-cancer agents using human melanoma cells in culture. The 5-fluorouridine-SPIONs with an optimized ester linker were taken up by cells and proved to be efficient anti-tumor agents. While the doxorubicin-SPIONs linked with a Gly-Phe-Leu-Gly tetrapeptide were cleaved by lysosomal enzymes, they exhibited poor uptake by human melanoma cells in culture.
Resumo:
Glucagon-like peptide-1(7-36)amide (tGLP-1), oxyntomodulin (OXM), and glucagon are posttranslational end products of the glucagon gene expressed in intestinal L-cells. In vivo, these peptides are potent inhibitors of gastric acid secretion via several pathways, including stimulation of somatostatin release. We have examined the receptors through which these peptides stimulate somatostatin secretion using the somatostatin-secreting cell line RIN T3. tGLP-1, OXM, and glucagon stimulated somatostatin release and cAMP accumulation in RIN T3 cells to similar maximum levels, with ED50 values close to 0.2, 2, and 50 nM and 0.02, 0.3, and 8 nM, respectively. Binding of [125I]tGLP-1, [125I]OXM, and [125I]glucagon to RIN T3 plasma membranes was inhibited by the three peptides, with relative potencies as follows: tGLP-1 > OXM > glucagon. Whatever the tracer used, the IC50 for tGLP-1 was close to 0.15 nM and was shifted rightward for OXM and glucagon by about 1 and 2-3 orders of magnitude, respectively. Scatchard analyses for the three peptides were compatible with a single class of receptor sites displaying a similar maximal binding close to 2 pmol/mg protein. In the hamster lung fibroblast cell line CCL39 transfected with the receptor for tGLP-1, binding of [125I]tGLP-1 was inhibited by tGLP-1, OXM, and glucagon, with relative potencies close to those obtained with RIN T3 membranes. Chemical cross-linking of [125I]tGLP-1, [125I]OXM, and [125I]glucagon revealed a single band at 63,000 mol wt, the intensity of which was dose-dependently reduced by all three peptides. These data suggest that in the somatostatin-secreting cell line RIN T3, OXM and glucagon stimulate somatostatin release through a tGLP-1-preferring receptor. This suggests that some biological effects, previously described for these peptides, might be due to their interaction with this receptor.
Resumo:
T cells expressing T cell receptor (TCR) complexes that lack CD3 delta, either due to deletion of the CD3 delta gene, or by replacement of the connecting peptide of the TCR alpha chain, exhibit severely impaired positive selection and TCR-mediated activation of CD8 single-positive T cells. Because the same defects have been observed in mice expressing no CD8 beta or tailless CD8 beta, we examined whether CD3 delta serves to couple TCR.CD3 with CD8. To this end we used T cell hybridomas and transgenic mice expressing the T1 TCR, which recognizes a photoreactive derivative of the PbCS 252-260 peptide in the context of H-2K(d). We report that, in thymocytes and hybridomas expressing the T1 TCR.CD3 complex, CD8 alpha beta associates with the TCR. This association was not observed on T1 hybridomas expressing only CD8 alpha alpha or a CD3 delta(-) variant of the T1 TCR. CD3 delta was selectively co-immunoprecipitated with anti-CD8 antibodies, indicating an avid association of CD8 with CD3 delta. Because CD8 alpha beta is a raft constituent, due to this association a fraction of TCR.CD3 is raft-associated. Cross-linking of these TCR-CD8 adducts results in extensive TCR aggregate formation and intracellular calcium mobilization. Thus, CD3 delta couples TCR.CD3 with raft-associated CD8, which is required for effective activation and positive selection of CD8(+) T cells.
Resumo:
A novel melanoma-associated differentiation Ag whose surface expression can be enhanced or induced by IFN-gamma was identified by mAb Me14/D12. Testing of numerous tumor cell lines and tumor tissue sections showed that Me14/D12-defined Ag was present not only on melanoma but also on other tumor lines of neuroectodermal origin such as gliomas and neuroblastomas and on some lymphoblastic B cell lines, on monocytes and macrophages. Immunoprecipitation by mAb Me14/D12 of lysates from [35S]methionine-labeled melanoma cells analyzed by SDS-PAGE revealed two polypeptide chains of 33 and 38 KDa, both under reducing and nonreducing conditions. Cross-linking experiments indicated that the two chains were present at the cell surface as a dimeric structure. Two-dimensional gel electrophoresis showed that the two chains of 33 and 38 KDa had isoelectric points of 6.2 and 5.7, respectively. Treatment of the melanoma cells with tunicamycin, an inhibitor of N-linked glycosylation, resulted in a reduction of the Mr from 33 to 24 KDa and from 38 to 26 KDa. Peptide maps obtained after Staphylococcus aureus V8 protease digestion showed no shared peptides between the two chains. Although biochemical data indicate that Me14/D12 molecules do not correspond to any known MHC class II Ag, their dimeric structure, tissue distribution, and regulation of IFN-gamma suggest that they could represent a new member of the MHC class II family.
Resumo:
Radioiodinated recombinant human interferon-gamma (IFN gamma) bound to human monocytes, U937, and HL60 cells in a specific, saturable, and reversible manner. At 4 degrees C, the different cell types bound 3,000-7,000 molecules of IFN gamma, and binding was of comparable affinity (Ka = 4-12 X 10(8) M-1). No change in the receptor was observed after monocytes differentiated to macrophages or when the cell lines were pharmacologically induced to differentiate. The functional relevance of the receptor was validated by the demonstration that receptor occupancy correlated with induction of Fc receptors on U937. Binding studies using U937 permeabilized with digitonin showed that only 46% of the total receptor pool was expressed at the cell surface. The receptor appears to be a protein, since treatment of U937 with trypsin or pronase reduced 125I-IFN gamma binding by 87 and 95%, respectively. At 37 degrees C, ligand was internalized, since 32% of the cell-associated IFN gamma became resistant to trypsin stripping. Monocytes degraded 125I-IFN gamma into trichloroacetic acid-soluble counts at 37 degrees C but not at 4 degrees C, at an approximate rate of 5,000 molecules/cell per h. The receptor was partially characterized by SDS-polyacrylamide gel electrophoresis analysis of purified U937 membranes that had been incubated with 125I-IFN gamma. After cross-linking, the receptor-ligand complex migrated as a broad band that displayed an Mr of 104,000 +/- 18,000 at the top and 84,000 +/- 6,000 at the bottom. These results thereby define and partially characterize the IFN gamma receptor of human mononuclear phagocytes.
Resumo:
The gap junction protein connexin37 (Cx37) plays an important role in cell-cell communication in the vasculature. Cx37 is expressed in endothelial cells, platelets and megakaryocytes. We have recently shown that Cx37 limits thrombus propensity by permitting intercellular signaling between aggregating platelets. Here, we have performed high throughput phage display to identify potential binding partners for the regulatory intracellular C-terminus of Cx37 (Cx37CT). We retrieved 2 consensus binding motifs for Cx37CT: WHK...[K,R]XP... and FH-K...[K,R]XXP.... Sequence alignment against the NCBI protein database indicated 66% homology of one the selected peptides with FVIII B-domain. We performed cross-linking reactions using BS3 and confirmed that an 11-mer peptide of the FVIII B-domain sequence linked to recombinant Cx37CT. In vitro binding of this peptide to Cx37CT was also confirmed by surface plasmon resonance. The dissociation constant of FVIII B-domain peptides to Cx37CT was ~20 uM. Other peptide sequences, designed upstream or downstream of the FVIII B-domain sequence, showed very low or no affinity for Cx37CT. Finally, in vivo studies revealed that thrombin generation in platelet-poor plasma from Cx37-/- mice (endogenous thrombin potential: 634±11 nM min, mean±SEM) was increased compared to Cx37+/+ mice (427±12, P<0.001). Moreover, partial activated thromboplastin time (aPTT) was shorter in Cx37-/- (39.7±1.5 s) than in Cx37+/+ mice (45.9±1.8, P=0.03), whereas prothrombin time was comparable. The shorter aPTT in Cx37-/- mice correlated with higher circulating FVIII activity (46.0±0.7 vs. 53.5±2.7 s for Cx37+/+, P=0.03). Overall, our data show for the first time a functional interaction between FVIII and Cx37. This interaction may be relevant for the control of FVIII secretion and, thereby, in the regulation of levels of FVIII circulating in blood. In addition, these results may open new perspectives to improve the efficiency of recombinant FVIII manufacturing.
Resumo:
RÉSUMÉ: Le génome de toute cellule est susceptible d'être attaqué par des agents endogènes et exogènes. Afin de préserver l'intégrité génomique, les cellules ont développé des multitudes de mécanismes. La réplication de l'ADN, une étape importante durant le cycle cellulaire, constitue un stress et présente un danger important pour l'intégrité du génome. L'anémie de Fanconi est une maladie héréditaire rare dont les protéines impliquées semblent jouer un rôle crucial dans la réponse au stress réplicatif. La maladie est associée à une instabilité chromosomique ainsi qu'à une forte probabilité de développer des cancers. Les cellules des patients souffrant de l'anémie de Fanconi sont sensibles à des agents interférant avec la réplication de l'ADN, et plus particulièrement àdes agents qui fient les deux brins d'ADN d'une manière covalente. L'anémie de Fanconi est une maladie génétiquement hétérogène. Treize protéines ont pu être identifiées. Elles semblent figurer dans une même voie de signalisation qui est aussi connue sous le nom de « FA/BRCA pathway », car un des gènes est identique au gène BRCA2 (breast cancer susceptibility gene 2). Huit protéines forment un complexe nucléaire dont l'intégrité est nécessaire à la monoubiquitination de deux autres protéines, FANCD2 et FANCI, en réponse à un stress réplicatif. A ce jour, la fonction moléculaire des protéines du « FA/BRCA pathway »reste encore mal décrite. Au début de mon travail de thèse, nous avons donc décidé de purifier les protéines du complexe nucléaire et d'étudier leurs propriétés biochimiques. Nous avons tout d'abord étudié les cinq protéines connues à l'époque qui sont FANCA, FANCC, FANCE, FANCF et FANCG. Par la suite, nous avons étendu notre étude à des protéines découvertes plus récemment, FANCL, FANCM et FAAP24, en concentrant finalement notre travail sur la caractérisation de FANCM. FANCM, contrairement aux autres protéines du complexe, est constituée de deux domaines conservés suggérant un rôle important dans le métabolisme de l'ADN. Il s'agit d'un domaine « DEAH box hélicase »situé dans la partie N-terminale et d'un domaine « ERCC4 nuclease »situé dans la partie C-terminale de la protéine. Dans cette étude, nous avons purifié avec succès la protéine FANCM entière à partir d'un système hétérologue. Nous montrons que FANCM s'attache de manière spécifique à des jonctions de Holliday et des fourches de réplication. De plus, nous démontrons que FANCM peut déplacer le point de jonction de ces structures via son domaine hélicase de manière dépendante de l'ATP. FANCM est aussi capable de dissocier de grands intermédiaires de la recombinaison, via la migration de jonctions de Holliday à travers une région d'homologie de 2.6 kb. Tous ces résultats suggèrent que FANCM peut s'attacher spécifiquement à des fourches de réplication et à des jonctions de Holliday in vitro et que son domaine hélicase est associé à une activité migratoire efficace. Nous pensons que FANCM peut avoir un rôle direct sur les intermédiaires de réplication. Ceci est en accord avec l'idée que les protéines de l'anémie de Fanconi coordonnent la réparation de l'ADN au niveau des fourches de réplication arrêtées. Nos résultats donnent une première indication quant au rôle de FANCM dans la cellule et peuvent contribuer à élucider la fonction de cette voie de signalisation peu comprise jusqu'à présent. SUMMARY: The genome of every cell is subject to a constant offence by endogenous and exogenous agents. Not surprisingly; cells have evolved a multitude of mechanisms which aim at preserving genomic integrity. A key step during the life cycle of a cell, DNA replication itself, constitutes a special danger to the integrity of the genome. The proteins defective in the rare hereditary disease Fanconi anemia (FA) are suspected to play a crucial role in the cellular response to DNA replication stress. The disease is associated with chromosomal instability and pronounced cancer susceptibility. Cells from Fanconi anemia patients are sensitive to a variety of agents which interfere with DNA replication, DNA interstrand cross-linking agents being particularly threatening to their survival. Fanconi anemia is a genetically heterogeneous disease with 13 different proteins identified, which seem to work together in a common pathway. Since one of the FA genes is identical to the breast cancer susceptibility gene BRCA2, it is also referred to as the FA/BRCA pathway. Eight proteins form a nuclear complex, whose integriry is required for the monoubiquitination of two other FA proteins, FANCD2 and FANCI, in response to DNA replication stress. Despite intensive research, the function of the FA/BRCA pathway at a molecular level has remained largely elusive so far. At the beginning of my thesis, we therefore decided to purify the proteins of the FA core complex and to investigate their biochemical properties. We started with the five proteins which were known at that time, FANCA, FANCC, FANCE, FANCF, and FACG. Later on, we extended our studies to the newly discovered proteins FANCL, FANCM, and FAAP24, and eventually focused our work on the characterisation of FANCM. In contrast to the other core complex proteins, FANCM contains two conserved domains, which point to a role in DNA metabolism: an N-terminal DEAH box helicase domain and a C-terminal ERCC4 nuclease domain. In this study, we have successfully purified full-length FANCM from a recombinant source. We show that purified FANCM binds to branched DNA molecules, such as Holliday junctions and replication forks, with high specificity and affinity. In addition, we demonstrate that FANCM can translocate the junction point of branched DNA molecules due to its helicase domain in an ATPase-dependent manner. FANCM can even dissociate large recombination intermediates, via branch migration of Holliday junctions through a 2.6 kb region of homology. Taken together, our data suggest that FANCM can specifically bind to replication forks and Holliday junctions in vitro, and that its DEAH box helicase domain is associated with a potent branch migration activity. We propose that FANCM might have a direct role in the processing of DNA replication intermediates. This is consistent with the current view that FA proteins coordinate DNA repair at stalled replication forks. Our findings provide a first hint as to the context in which FANCM might play a role in the cell. We are optimistic that they might be key to further elucidate the function of a pathway which is far from being understood.
Resumo:
The roles of peroxisome proliferator-activated receptors (PPARs) and CCAAT/enhancer-binding proteins (C/EBPs) in keratinocyte and sebocyte differentiation suggest that both families of transcription factors closely interact in the skin. Initial characterization of the mouse PPARbeta promoter revealed an AP-1 site that is crucial for the regulation of PPARbeta expression in response to inflammatory cytokines in the skin. We now present evidence for a novel regulatory mechanism of the expression of the PPARbeta gene by which two members of the C/EBP family of transcription factors inhibit its basal promoter activity in mouse keratinocytes. We first demonstrate that C/EBPalpha and C/EBPbeta, but not C/EBPdelta, inhibit the expression of PPARbeta through the recruitment of a transcriptional repressor complex containing HDAC-1 to a specific C/EBP binding site on the PPARbeta promoter. Consistent with this repression, the expression patterns of PPARbeta and C/EBPs are mutually exclusive in keratinocytes of the interfollicular epidermis and hair follicles in mouse developing skin. This work reveals the importance of the regulatory interplay between PPARbeta and C/EBP transcription factors in the control of proliferation and differentiation in this organ. Such insights are crucial for the understanding of the molecular control regulating the balance between proliferation and differentiation in many cell types including keratinocytes.