995 resultados para Coherent beam combination
Resumo:
It is shown how the single-site coherent potential approximation and the averaged T-matrix approximation become exact in the calculation of the averaged single-particle Green function of the electron in the Anderson model when the site energy is distributed randomly with lorentzian distribution. Using these approximations, Lloyd's exact result is reproduced.
Resumo:
The rail-sleeper system is idealized as an infinite, periodic beam-mass system. Use is made of the periodicity principle for the semi-infinite halves on either side of the forcing point for evaluation of the wave propagation constants and the corresponding modal vectors. It is shown that the spread of acceleration away from the forcing point depends primarily upon one of the wave propagation constants. However, all the four modal vectors (two for the left-hand side and two for the right-hand side) determine the driving point impedance of the rail-sleeper system, which in combination with the driving point impedance of the wheel (which is adopted from the preceding companion paper) determines the forces generated by combined surface roughness and the resultant accelerations. The compound one-third octave acceleration levels generated by typical roughness spectra are generally of the same order as the observed levels.
Resumo:
Glucosinolates are a group of sulphur-containing glycosides found in the plant order Brassicales which includes the Brassica vegetables such as broccoli, cabbage and cauliflower. When brought into contact with the plant enzymes, myrosinases, the glucosinolates break down releasing glucose and other products which serve principally in plant defence against herbivores. The most important of the products from a human nutritional viewpoint, are the isothiocyanates. These potent inducers of detoxifying enzymes bestow the distinct anti-cancer properties on these plants. Unique among tropical fruits, papaya is known to contain an abundance of one particular glucosinolate, glucotropaeolin. Other compounds that play a pivotal role in the chemical defence system of many plants are the cyanogenic glycosides. Cyanogenic glycosides are activated by plant enzymes in the event of pest attack, releasing the deterrent: toxic hydrogen cyanide. Papaya, in addition to glucosinolates, also contains low levels of cyanogenic glycosides, an unusual occurrence because it was assumed that the two classes of metabolites were mutually exclusive. Studies measuring the levels of both in the edible parts of the papaya fruit and other utilised tissues are discussed and considered in the context of potential human health ramifications. All rights reserved, Elsevier.
Resumo:
Interaction of shock heated test gas in the free piston driven shock tube with bulk and thin film of cubic zirconium dioxide (ZrO2) prepared by combustion method is investigated. The test samples before and after exposure to the shock wave are analyzed by X-ray diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscope (SEM). The study shows transformation of metastable cubic ZrO2 to stable monoclinic ZrO2 phase after interacting with shock heated oxygen gas due to the heterogeneous catalytic recombination surface reaction.
Resumo:
Mathematical models, for the stress analysis of symmetric multidirectional double cantilever beam (DCB) specimen using classical beam theory, first and higher-order shear deformation beam theories, have been developed to determine the Mode I strain energy release rate (SERR) for symmetric multidirectional composites. The SERR has been calculated using the compliance approach. In the present study, both variationally and nonvariationally derived matching conditions have been applied at the crack tip of DCB specimen. For the unidirectional and cross-ply composite DCB specimens, beam models under both plane stress and plane strain conditions in the width direction are applicable with good performance where as for the multidirectional composite DCB specimen, only the beam model under plane strain condition in the width direction appears to be applicable with moderate performance. Among the shear deformation beam theories considered, the performance of higher-order shear deformation beam theory, having quadratic variation for transverse displacement over the thickness, is superior in determining the SERR for multidirectional DCB specimen.
Resumo:
Vibration problem of generally orthotropic plates with particular attention to plates of skew geometry is studied. The formulation is based on orthotropic plate theory with arbitrary orientation of the principal axes of orthotropy. The boundary conditions considered are combinations of simply supported, clamped, and free-edge conditions. Approximate solution for frequencies and modes is obtained by the Ritz method using products of appropriate beam characteristic functions as admissible functions. The variation of frequencies and modes with orientation of the axes of orthotropy is examined for different skew angles and boundary conditions. Features such as "crossings" and "quasi-degeneracies" of the frequency curves are found to occur with variation of the orientation of the axes of orthotropy for a given geometry of the skew plate. It is also found that for each combination of skew angle and side ratio, a particular orientation of the axes gives the highest value for the fundamental frequency of the plate.
Resumo:
The vibration problems of skew plates with different edge conditions involving simple support and clamping have been considered by using the variational method of Ritz, a double series of beam characteristic functions being employed appropriate to the combination of the edge conditions. Natural frequencies and modes of vibration have been obtained for different combinations of side ratio and skew angle. These detailed studies reveal several interesting features concerning the frequency curves and nodal patterns. The results presented should, in addition, be of considerable value and practical significance in design applications.
Resumo:
The nonlinear theory of the instability caused by an electron beam-plasma interaction is studied. A nonlinear analysis has been carried out using many-body methods. A general formula for a neutral collisionless plasma, without external fields, is derived. This could be used for calculating the saturation levels of other instabilities. The effect of orbit perturbation theory on the beam-plasma instability is briefly reviewed.
Resumo:
In many instances we find it advantageous to display a quantum optical density matrix as a generalized statistical ensemble of coherent wave fields. The weight functions involved in these constructions turn out to belong to a family of distributions, not always smooth functions. In this paper we investigate this question anew and show how it is related to the problem of expanding an arbitrary state in terms of an overcomplete subfamily of the overcomplete set of coherent states. This provides a relatively transparent derivation of the optical equivalence theorem. An interesting by-product is the discovery of a new class of discrete diagonal representations.
Resumo:
A linear excitation of electromagnetic modes at frequencies (n + ı89 in a plasma through which two electron beams are contra-streaming along the magnetic field is investigated. This may be a source of the observed {cote emissions at auroral latitudes.
Resumo:
Heating of laser produced plasmas by an instability is investigated. For intense laser beams anomalous absorption is found. A comparison is made with the experiment.
Resumo:
We investigate use of transverse beam polarization in probing anomalous coupling of a Higgs boson to a pair of vector bosons, at the International Linear Collider (ILC). We consider the most general form of V V H (V = W/Z) vertex consistent with Lorentz invariance and investigate its effects on the process e(+)e(-) -> f (f) over barH, f being a light fermion. Constructing observables with definite C P and naive time reversal ((T) over tilde) transformation properties, we find that transverse beam polarization helps us to improve on the sensitivity of one part of the anomalous Z Z H Coupling that is odd under C P. Even more importantly it provides the possibility of discriminating from each other, two terms in the general Z Z H vertex, both of which are even under C P and (T) over bar. Use of transversebeam polarization when combined with information from unpolarized and linearly polarized beams therefore, allows one to have completely independent probes of all the different parts of a general ZZH vertex.
Resumo:
Effects of cochannel interference and synchronization error of the carrier phase on the probability of error in binary communications are considered. Several bounds on the probability of error are proposed. The bounds are easy to compute and do not require complete statistical characterization of the errors. They turn out to be simple linear combinations of error probabilities with no cochannel interferences and no phase errors. Several illustrative examples are given which show that the bounds can be tight.
Resumo:
The intermittently rivet fastened Rectangular Hollow Flange Channel Beam (RHFCB) is a new cold-formed hollow section proposed as an alternative to welded hollow flange channel beams. It is a monosymmetric channel section made by intermittently rivet fastening two torsionally rigid rectangular hollow flanges to a web plate. This process enables the end users to choose an effective combination of different web and flange plate sizes to achieve optimum design capacities. Recent research studies focused mainly on the shear behaviour of the most commonly used lipped channel beam and welded hollow flange beam sections. However, the shear behaviour of rivet fastened RHFCB has not been investigated. Therefore a detailed experimental study involving 24 shear tests was undertaken to investigate the shear behaviour and capacities of rivet fastened RHFCBs. Simply supported test specimens of RHFCB with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. Comparison of experimental shear capacities with corresponding predictions from the current Australian cold-formed steel design rules showed that the current design rules are very conservative for the shear design of rivet fastened RHFCBs. Significant improvements to web shear buckling occurred due to the presence of rectangular hollow flanges while considerable post-buckling strength was also observed. Such enhancements to the shear behaviour and capacity were achieved with a rivet spacing of 100 mm. Improved design rules were proposed for rivet fastened RHFCBs based on the current shear design equations in AISI S100 and the direct strength method. This paper presents the details of this experimental investigation and the results.