860 resultados para Co-expression network
Resumo:
Fluctuation-dissipation theorems can be used to predict characteristics of noise from characteristics of the macroscopic response of a system. In the case of gene networks, feedback control determines the "network rigidity," defined as resistance to slow external changes. We propose an effective Fokker-Planck equation that relates gene expression noise to topology and to time scales of the gene network. We distinguish between two situations referred to as normal and inverted time hierarchies. The noise can be buffered by network feedback in the first situation, whereas it can be topology independent in the latter.
Resumo:
NGAL (Neutrophil Gelatinase-associated Lipocalin ) is a protein of lipocalin superfamily. Recent literature focused on its biomarkers function in several pathological condition (acute and chronic kidney damage, autoimmune disease, malignancy). NGAL biological role is not well elucidated. Several are the demonstration of its bacteriostatic role. Recent papers have indeed highlight NGAL role in NFkB modulation. The aim of this study is to understand whether NGAL may exert a role in the activation (modulation) of T cell response through the regulation of HLA-G complex, a mediator of tolerance. From 8 healthy donors we obtained peripheral blood mononuclear cells (PBMCs) and we isolated by centrifugation on a Ficoll gradient. Cells were then treated with four concentrations of NGAL (40-320 ng/ml) with or without iron. We performed flow cytometry analysis and ELISA test. NGAL increased the HLA-G expression on CD4+ T cells, with an increasing corresponding to the dose. Iron effect is not of unique interpretation. NGAL adiction affects regulatory T cells increasing in vitro expansion of CD4+ CD25+ FoxP3+ cells. Neutralizing antibody against NGAL decreased HLA-G expression and reduced significantly CD4+ CD25+ FoxP3+ cells percentage. In conclusion, we provided in vitro evidence of NGAL involvement in cellular immunity. The potential role of NGAL as an immunomodulatory molecule has been evaluated: it has been shown that NGAL plays a pivotal role in the induction of immune tolerance up regulating HLA-G and T regulatory cells expression in healthy donors. As potential future scenario we highlight the in vivo role of NGAL in immunology and immunomodulation, and its possible relationship with immunosuppressive therapy efficacy, tolerance induction in transplant patients, and/or in other immunological disorders.
Resumo:
From the late 1980s, the automation of sequencing techniques and the computer spread gave rise to a flourishing number of new molecular structures and sequences and to proliferation of new databases in which to store them. Here are presented three computational approaches able to analyse the massive amount of publicly avalilable data in order to answer to important biological questions. The first strategy studies the incorrect assignment of the first AUG codon in a messenger RNA (mRNA), due to the incomplete determination of its 5' end sequence. An extension of the mRNA 5' coding region was identified in 477 in human loci, out of all human known mRNAs analysed, using an automated expressed sequence tag (EST)-based approach. Proof-of-concept confirmation was obtained by in vitro cloning and sequencing for GNB2L1, QARS and TDP2 and the consequences for the functional studies are discussed. The second approach analyses the codon bias, the phenomenon in which distinct synonymous codons are used with different frequencies, and, following integration with a gene expression profile, estimates the total number of codons present across all the expressed mRNAs (named here "codonome value") in a given biological condition. Systematic analyses across different pathological and normal human tissues and multiple species shows a surprisingly tight correlation between the codon bias and the codonome bias. The third approach is useful to studies the expression of human autism spectrum disorder (ASD) implicated genes. ASD implicated genes sharing microRNA response elements (MREs) for the same microRNA are co-expressed in brain samples from healthy and ASD affected individuals. The different expression of a recently identified long non coding RNA which have four MREs for the same microRNA could disrupt the equilibrium in this network, but further analyses and experiments are needed.
Resumo:
The TROPOspheric Monitoring Instrument (TROPOMI) will be part of ESA's Sentinel-5 Precursor (S5P) satellite platform scheduled for launch in 2015. TROPOMI will monitor methane and carbon monoxide concentrations in the Earth's atmosphere by measuring spectra of back-scattered sunlight in the short-wave infrared (SWIR). S5P will be the first satellite mission to rely uniquely on the spectral window at 4190–4340 cm−1 (2.3 μm) to retrieve CH4 and CO. In this study, we investigated if the absorption features of the three relevant molecules CH4, CO, and H2O are adequately known. To this end, we retrieved total columns of CH4, CO, and H2O from absorption spectra measured by two ground-based Fourier transform spectrometers that are part of the Total Carbon Column Observing Network (TCCON). The retrieval results from the 4190–4340 cm−1 range at the TROPOMI resolution (0.45 cm−1) were then compared to the CH4 results obtained from the 6000 cm−1 region, and the CO results obtained from the 4190–4340 cm−1 region at the higher TCCON resolution (0.02 cm−1). For TROPOMI-like settings, we were able to reproduce the CH4 columns to an accuracy of 0.3% apart from a constant bias of 1%. The CO retrieval accuracy was, through interference, systematically influenced by the shortcomings of the CH4 and H2O spectroscopy. In contrast to CH4, the CO column error also varied significantly with atmospheric H2O content. Unaddressed, this would introduce seasonal and latitudinal biases to the CO columns retrieved from TROPOMI measurements. We therefore recommend further effort from the spectroscopic community to be directed at the H2O and CH4 spectroscopy in the 4190–4340 cm−1 region.
Resumo:
AIM To describe structural covariance networks of gray matter volume (GMV) change in 28 patients with first-ever stroke to the primary sensorimotor cortices, and to investigate their relationship to hand function recovery and local GMV change. METHODS Tensor-based morphometry maps derived from high-resolution structural images were subject to principal component analyses to identify the networks. We calculated correlations between network expression and local GMV change, sensorimotor hand function and lesion volume. To verify which of the structural covariance networks of GMV change have a significant relationship to hand function, we performed an additional multivariate regression approach. RESULTS Expression of the second network, explaining 9.1% of variance, correlated with GMV increase in the medio-dorsal (md) thalamus and hand motor skill. Patients with positive expression coefficients were distinguished by significantly higher GMV increase of this structure during stroke recovery. Significant nodes of this network were located in md thalamus, dorsolateral prefrontal cortex, and higher order sensorimotor cortices. Parameter of hand function had a unique relationship to the network and depended on an interaction between network expression and lesion volume. Inversely, network expression is limited in patients with large lesion volumes. CONCLUSION Chronic phase of sensorimotor cortical stroke has been characterized by a large scale co-varying structural network in the ipsilesional hemisphere associated specifically with sensorimotor hand skill. Its expression is related to GMV increase of md thalamus, one constituent of the network, and correlated with the cortico-striato-thalamic loop involved in control of motor execution and higher order sensorimotor cortices. A close relation between expression of this network with degree of recovery might indicate reduced compensatory resources in the impaired subgroup.
Resumo:
Heating of a pink two-dimensional Co(II) coordination network {[Co2(μ2-OH2)(bdc)2(S-nia)2(H2O)(dmf)]·2(dmf)·(H2O)}n (1) built from 1,4-benzenedicarboxylic acid (H2bdc) residues and thionicotinamide (S-nia) ligands initiates a single-crystal-to-single-crystal transition accompanied by removal of both coordinated and co-crystallized solvents. In the dry blue form, [Co(bdc)(S-nia)]n (dry_1), the Co(II) centers changed from an octahedral to a square pyramidal configuration.
Resumo:
Intravital imaging has revealed that T cells change their migratory behavior during physiological activation inside lymphoid tissue. Yet, it remains less well investigated how the intrinsic migratory capacity of activated T cells is regulated by chemokine receptor levels or other regulatory elements. Here, we used an adjuvant-driven inflammation model to examine how motility patterns corresponded with CCR7, CXCR4, and CXCR5 expression levels on ovalbumin-specific DO11.10 CD4(+) T cells in draining lymph nodes. We found that while CCR7 and CXCR4 surface levels remained essentially unaltered during the first 48-72 h after activation of CD4(+) T cells, their in vitro chemokinetic and directed migratory capacity to the respective ligands, CCL19, CCL21, and CXCL12, was substantially reduced during this time window. Activated T cells recovered from this temporary decrease in motility on day 6 post immunization, coinciding with increased migration to the CXCR5 ligand CXCL13. The transiently impaired CD4(+) T cell motility pattern correlated with increased LFA-1 expression and augmented phosphorylation of the microtubule regulator Stathmin on day 3 post immunization, yet neither microtubule destabilization nor integrin blocking could reverse TCR-imprinted unresponsiveness. Furthermore, protein kinase C (PKC) inhibition did not restore chemotactic activity, ruling out PKC-mediated receptor desensitization as mechanism for reduced migration in activated T cells. Thus, we identify a cell-intrinsic, chemokine receptor level-uncoupled decrease in motility in CD4(+) T cells shortly after activation, coinciding with clonal expansion. The transiently reduced ability to react to chemokinetic and chemotactic stimuli may contribute to the sequestering of activated CD4(+) T cells in reactive peripheral lymph nodes, allowing for integration of costimulatory signals required for full activation.
Resumo:
The Molybdenum-nitrogenase is responsible for most biological nitrogen fixation activity (BNF) in the biosphere. Due to its great agronomical importance, it has been the subject of profound genetic and biochemical studies. The Mo nitrogenase carries at its active site a unique iron-molybdenum cofactor (FeMoco) that consists of an inorganic 7 Fe, 1 Mo, 1 C, 9 S core coordinated to the organic acid homocitrate. Biosynthesis of FeMo-co occurs outside nitrogenase through a complex and highly regulated pathway involving proteins acting as molecular scaffolds, metallocluster carriers or enzymes that provide substrates in appropriate chemical forms. Specific expression regulatory factors tightly control the accumulation levels of all these other components. Insertion of FeMo-co into a P-cluster containing apo-NifDK polypeptide results in nitrogenase reconstitution. Investigation of FeMo-co biosynthesis has uncovered new radical chemistry reactions and new roles for Fe-S clusters in biology.
Resumo:
A novel artificial neural network (ANN)-based nonlinear equalizer (NLE) of low complexity is demonstrated for 40-Gb/s CO-OFDM at 2000 km, revealing ∼1.5 dB enhancement in Q-factor compared to inverse Volterra-series transfer function based NLE.
Resumo:
The specific transporters involved in maintenance of blood pH homeostasis in cephalopod molluscs have not been identified to date. Using in situ hybridization and immuno histochemical methods, we demonstrate that Na+/K+-ATPase (soNKA), a V-type H+-ATPase (soV-HA), and Na+/HCO3- cotransporter (soNBC) are co-localized in NKA-rich cells in the gills of Sepia officinalis. mRNA expression patterns of these transporters and selected metabolic genes were examined in response to moderately elevated seawater pCO2 (0.16 and 0.35 kPa) over a time-course of six weeks in different ontogenetic stages. The applied CO2 concentrations are relevant for ocean acidification scenarios projected for the coming decades. We determined strong expression changes in late stage embryos and hatchlings, with one to three log2-fold reductions in soNKA, soNBCe, socCAII and COX. In contrast, no hypercapnia induced changes in mRNA expression were observed in juveniles during both short- and long-term exposure. However a transiently increased demand of ion regulatory demand was evident during the initial acclimation reaction to elevated seawater pCO2. Gill Na+/K+-ATPase activity and protein concentration were increased by approximately 15% in during short (2-11 day), but not long term (42 day) exposure. Our findings support the hypothesis that the energy budget of adult cephalopods is not significantly compromised during long-term exposure to moderate environmental hypercapnia. However, the down regulation of ion-regulatory and metabolic genes in late stage embryos, taken together with a significant reduction in somatic growth, indicates that cephalopod early life stages are challenged by elevated seawater pCO2.
The role of the RNA silencing network on the co-evolution of Phytophthora infestans and Solanum spp.
Resumo:
Arabinogalactan proteins (AGPs) are cell wall proteoglycans that have been shown to be important for pollen development. An Arabidopsis double null mutant for two pollen-specific AGPs (agp6 agp11) showed reduced pollen tube growth and compromised response to germination cues in vivo. A microarray experiment was performed on agp6 agp11 pollen tubes to search for genetic interactions in the context of pollen tube growth. A yeast two-hybrid experiment for AGP6 and AGP11 was also designed.
Resumo:
The changing role of agriculture is at the core of transition pathways in many rural areas. Productivism, post-productivism and multifunctionality have been targeted towards a possible conceptualization of the transition happening in rural areas. The factors of change, including productivist and post-productivist trends, are combined in various ways and have gone in quite diverse directions and intensities, in individual regions and localities. Even, in the same holding, productivist and post-productivist strategies can co-exist spatially, temporally, structurally, leading to a higher complexity in changing patterns. In south Portugal extensive landscapes, dominated by traditionally managed agro-forestry systems under a fuzzy land use pattern, multifunctionality at the farm level is indeed conducted by different stakeholders whose interests may or not converge: a multifunctional land management may indeed incorporate post-productivist and productivist agents. These stakeholders act under different levels of ownership, management and use, reflecting a particular land management dynamic, in which different interests may exist, from commercial production to a variety of other functions (hunting, bee-keeping, subsistence farming, etc.), influencing management at the farm level and its supposed transition trajectory. This multistakeholder dynamic is composed by the main land-manager (the one who takes the main decisions), sub land-managers (land-managers under the rules of the main land-manager), workers and users (locals or outsiders), whose interest and action within the holding may vary differently according to future (policy, market, etc.) trends, and therefore reflect more or less resilient systems. The goal of the proposed presentation is to describe the multi-stakeholder relations at the farm level, its spatial expression and the factors influencing the land management system resilience in face of the transition trends in place.