974 resultados para Clinical Protocols
Resumo:
Literally, the word compliance suggests conformity in fulfilling official requirements. The thesis presents the results of the analysis and design of a class of protocols called compliant cryptologic protocols (CCP). The thesis presents a notion for compliance in cryptosystems that is conducive as a cryptologic goal. CCP are employed in security systems used by at least two mutually mistrusting sets of entities. The individuals in the sets of entities only trust the design of the security system and any trusted third party the security system may include. Such a security system can be thought of as a broker between the mistrusting sets of entities. In order to provide confidence in operation for the mistrusting sets of entities, CCP must provide compliance verification mechanisms. These mechanisms are employed either by all the entities or a set of authorised entities in the system to verify the compliance of the behaviour of various participating entities with the rules of the system. It is often stated that confidentiality, integrity and authentication are the primary interests of cryptology. It is evident from the literature that authentication mechanisms employ confidentiality and integrity services to achieve their goal. Therefore, the fundamental services that any cryptographic algorithm may provide are confidentiality and integrity only. Since controlling the behaviour of the entities is not a feasible cryptologic goal,the verification of the confidentiality of any data is a futile cryptologic exercise. For example, there exists no cryptologic mechanism that would prevent an entity from willingly or unwillingly exposing its private key corresponding to a certified public key. The confidentiality of the data can only be assumed. Therefore, any verification in cryptologic protocols must take the form of integrity verification mechanisms. Thus, compliance verification must take the form of integrity verification in cryptologic protocols. A definition of compliance that is conducive as a cryptologic goal is presented as a guarantee on the confidentiality and integrity services. The definitions are employed to provide a classification mechanism for various message formats in a cryptologic protocol. The classification assists in the characterisation of protocols, which assists in providing a focus for the goals of the research. The resulting concrete goal of the research is the study of those protocols that employ message formats to provide restricted confidentiality and universal integrity services to selected data. The thesis proposes an informal technique to understand, analyse and synthesise the integrity goals of a protocol system. The thesis contains a study of key recovery,electronic cash, peer-review, electronic auction, and electronic voting protocols. All these protocols contain message format that provide restricted confidentiality and universal integrity services to selected data. The study of key recovery systems aims to achieve robust key recovery relying only on the certification procedure and without the need for tamper-resistant system modules. The result of this study is a new technique for the design of key recovery systems called hybrid key escrow. The thesis identifies a class of compliant cryptologic protocols called secure selection protocols (SSP). The uniqueness of this class of protocols is the similarity in the goals of the member protocols, namely peer-review, electronic auction and electronic voting. The problem statement describing the goals of these protocols contain a tuple,(I, D), where I usually refers to an identity of a participant and D usually refers to the data selected by the participant. SSP are interested in providing confidentiality service to the tuple for hiding the relationship between I and D, and integrity service to the tuple after its formation to prevent the modification of the tuple. The thesis provides a schema to solve the instances of SSP by employing the electronic cash technology. The thesis makes a distinction between electronic cash technology and electronic payment technology. It will treat electronic cash technology to be a certification mechanism that allows the participants to obtain a certificate on their public key, without revealing the certificate or the public key to the certifier. The thesis abstracts the certificate and the public key as the data structure called anonymous token. It proposes design schemes for the peer-review, e-auction and e-voting protocols by employing the schema with the anonymous token abstraction. The thesis concludes by providing a variety of problem statements for future research that would further enrich the literature.
Resumo:
Undernutrition is common in patients admitted for surgery and is often unrecognised, untreated and worsens in hospital. The complex synergistic relationship between nutritional status and the physiological responses to surgery puts patients at high nutritional risk. There are clear prospective associations between inadequate nutritional status and the risk of poorer outcomes for surgical patients, including infection, complications and length of stay. However, practically and ethically evidence that nutritional interventions can significantly reduce these poor outcomes is difficult to obtain. Nevertheless health professionals have a duty of care to ensure our patients are properly fed, by whatever means, to meet their physiological requirements.
Resumo:
Ubiquitous access to patient medical records is an important aspect of caring for patient safety. Unavailability of sufficient medical information at the point-ofcare could possibly lead to a fatality. The U.S. Institute of Medicine has reported that between 44,000 and 98,000 people die each year due to medical errors, such as incorrect medication dosages, due to poor legibility in manual records, or delays in consolidating needed information to discern the proper intervention. In this research we propose employing emergent technologies such as Java SIM Cards (JSC), Smart Phones (SP), Next Generation Networks (NGN), Near Field Communications (NFC), Public Key Infrastructure (PKI), and Biometric Identification to develop a secure framework and related protocols for ubiquitous access to Electronic Health Records (EHR). A partial EHR contained within a JSC can be used at the point-of-care in order to help quick diagnosis of a patient’s problems. The full EHR can be accessed from an Electronic Health Records Centre (EHRC) when time and network availability permit. Moreover, this framework and related protocols enable patients to give their explicit consent to a doctor to access their personal medical data, by using their Smart Phone, when the doctor needs to see or update the patient’s medical information during an examination. Also our proposed solution would give the power to patients to modify the Access Control List (ACL) related to their EHRs and view their EHRs through their Smart Phone. Currently, very limited research has been done on using JSCs and similar technologies as a portable repository of EHRs or on the specific security issues that are likely to arise when JSCs are used with ubiquitous access to EHRs. Previous research is concerned with using Medicare cards, a kind of Smart Card, as a repository of medical information at the patient point-of-care. However, this imposes some limitations on the patient’s emergency medical care, including the inability to detect the patient’s location, to call and send information to an emergency room automatically, and to interact with the patient in order to get consent. The aim of our framework and related protocols is to overcome these limitations by taking advantage of the SIM card and the technologies mentioned above. Briefly, our framework and related protocols will offer the full benefits of accessing an up-to-date, precise, and comprehensive medical history of a patient, whilst its mobility will provide ubiquitous access to medical and patient information everywhere it is needed. The objective of our framework and related protocols is to automate interactions between patients, healthcare providers and insurance organisations, increase patient safety, improve quality of care, and reduce the costs.
Resumo:
A group key exchange (GKE) protocol allows a set of parties to agree upon a common secret session key over a public network. In this thesis, we focus on designing efficient GKE protocols using public key techniques and appropriately revising security models for GKE protocols. For the purpose of modelling and analysing the security of GKE protocols we apply the widely accepted computational complexity approach. The contributions of the thesis to the area of GKE protocols are manifold. We propose the first GKE protocol that requires only one round of communication and is proven secure in the standard model. Our protocol is generically constructed from a key encapsulation mechanism (KEM). We also suggest an efficient KEM from the literature, which satisfies the underlying security notion, to instantiate the generic protocol. We then concentrate on enhancing the security of one-round GKE protocols. A new model of security for forward secure GKE protocols is introduced and a generic one-round GKE protocol with forward security is then presented. The security of this protocol is also proven in the standard model. We also propose an efficient forward secure encryption scheme that can be used to instantiate the generic GKE protocol. Our next contributions are to the security models of GKE protocols. We observe that the analysis of GKE protocols has not been as extensive as that of two-party key exchange protocols. Particularly, the security attribute of key compromise impersonation (KCI) resilience has so far been ignored for GKE protocols. We model the security of GKE protocols addressing KCI attacks by both outsider and insider adversaries. We then show that a few existing protocols are not secure against KCI attacks. A new proof of security for an existing GKE protocol is given under the revised model assuming random oracles. Subsequently, we treat the security of GKE protocols in the universal composability (UC) framework. We present a new UC ideal functionality for GKE protocols capturing the security attribute of contributiveness. An existing protocol with minor revisions is then shown to realize our functionality in the random oracle model. Finally, we explore the possibility of constructing GKE protocols in the attribute-based setting. We introduce the concept of attribute-based group key exchange (AB-GKE). A security model for AB-GKE and a one-round AB-GKE protocol satisfying our security notion are presented. The protocol is generically constructed from a new cryptographic primitive called encapsulation policy attribute-based KEM (EP-AB-KEM), which we introduce in this thesis. We also present a new EP-AB-KEM with a proof of security assuming generic groups and random oracles. The EP-AB-KEM can be used to instantiate our generic AB-GKE protocol.