867 resultados para Classification of algebraic curves
Resumo:
Color segmentation of images usually requires a manual selection and classification of samples to train the system. This paper presents an automatic system that performs these tasks without the need of a long training, providing a useful tool to detect and identify figures. In real situations, it is necessary to repeat the training process if light conditions change, or if, in the same scenario, the colors of the figures and the background may have changed, being useful a fast training method. A direct application of this method is the detection and identification of football players.
Resumo:
PURPOSE. To describe and classify patterns of abnormal fundus autofluorescence (FAF) in eyes with early nonexudative age-related macular disease (AMD). METHODS. FAF images were recorded in eyes with early AMD by confocal scanning laser ophthalmoscopy (cSLO) with excitation at 488 nm (argon or OPSL laser) and emission above 500 or 521 nm (barrier filter). A standardized protocol for image acquisition and generation of mean images after automated alignment was applied, and routine fundus photographs were obtained. FAF images were classified by two independent observers. The ? statistic was applied to assess intra- and interobserver variability. RESULTS. Alterations in FAF were classified into eight phenotypic patterns including normal, minimal change, focal increased, patchy, linear, lacelike, reticular, and speckled. Areas with abnormal increased or decreased FAF signals may or may not have corresponded to funduscopically visible alterations. For intraobserver variability, ? of observer I was 0.80 (95% confidence interval [CI]0.71-0.89) and of observer II, 0.74. (95% CI, 0.64-0.84). For interobserver variability, ? was 0.77 (95% CI, 0.67-0.87). CONCLUSIONS. Various phenotypic patterns of abnormal FAF can be identified with cSLO imaging. Distinct patterns may reflect heterogeneity at a cellular and molecular level in contrast to a nonspecific aging process. The results indicate that the classification system yields a relatively high degree of intra- and interobserver agreement. It may be applicable for determination of novel prognostic determinants in longitudinal natural history studies, for identification of genetic risk factors, and for monitoring of future therapeutic interventions to slow the progression of early AMD. Copyright © Association for Research in Vision and Ophthalmology.
Resumo:
Large data sets of radiocarbon dates are becoming a more common feature of archaeological research. The sheer numbers of radiocarbon dates produced, however, raise issues of representation and interpretation. This paper presents a methodology which both reduces the visible impact of dating fluctuations, but also takes into consideration the influence of the underlying radiocarbon calibration curve. By doing so, it may be possible to distinguish between periods of human activity in early medieval Ireland and the statistical tails produced by radiocarbon calibration.
Resumo:
In recent years, wide-field sky surveys providing deep multi-band imaging have presented a new path for indirectly characterizing the progenitor populations of core-collapse supernovae (SN): systematic light curve studies. We assemble a set of 76 grizy-band Type IIP SN light curves from Pan-STARRS1, obtained over a constant survey program of 4 years and classified using both spectroscopy and machine learning-based photometric techniques. We develop and apply a new Bayesian model for the full multi-band evolution of each light curve in the sample. We find no evidence of a sub-population of fast-declining explosions (historically referred to as "Type IIL" SNe). However, we identify a highly significant relation between the plateau phase decay rate and peak luminosity among our SNe IIP. These results argue in favor of a single parameter, likely determined by initial stellar mass, predominantly controlling the explosions of red supergiants. This relation could also be applied for supernova cosmology, offering a standardizable candle good to an intrinsic scatter of 0.2 mag. We compare each light curve to physical models from hydrodynamic simulations to estimate progenitor initial masses and other properties of the Pan-STARRS1 Type IIP SN sample. We show that correction of systematic discrepancies between modeled and observed SN IIP light curve properties and an expanded grid of progenitor properties, are needed to enable robust progenitor inferences from multi-band light curve samples of this kind. This work will serve as a pathfinder for photometric studies of core-collapse SNe to be conducted through future wide field transient searches.
Resumo:
Breast cancer remains a frequent cause of female cancer death despite the great strides in elucidation of biological subtypes and their reported clinical and prognostic significance. We have defined a general cohort of breast cancers in terms of putative actionable targets, involving growth and proliferative factors, the cell cycle, and apoptotic pathways, both as single biomarkers across a general cohort and within intrinsic molecular subtypes.
We identified 293 patients treated with adjuvant chemotherapy. Additional hormonal therapy and trastuzumab was administered depending on hormonal and HER2 status respectively. We performed immunohistochemistry for ER, PR, HER2, MM1, CK5/6, p53, TOP2A, EGFR, IGF1R, PTEN, p-mTOR and e-cadherin. The cohort was classified into luminal (62%) and non-luminal (38%) tumors as well as luminal A (27%), luminal B HER2 negative (22%) and positive (12%), HER2 enriched (14%) and triple negative (25%). Patients with luminal tumors and co-overexpression of TOP2A or IGF1R loss displayed worse overall survival (p=0.0251 and p=0.0008 respectively). Non-luminal tumors had much greater heterogeneous expression profiles with no individual markers of prognostic significance. Non-luminal tumors were characterised by EGFR and TOP2A overexpression, IGF1R, PTEN and p-mTOR negativity and extreme p53 expression.
Our results indicate that only a minority of intrinsic subtype tumors purely express single novel actionable targets. This lack of pure biomarker expression is particular prevalent in the triple negative subgroup and may allude to the mechanism of targeted therapy inaction and myriad disappointing trial results. Utilising a combinatorial biomarker approach may enhance studies of targeted therapies providing additional information during design and patient selection while also helping decipher negative trial results.
Molecular classification of non-invasive breast lesions for personalised therapy and chemoprevention
Resumo:
Breast cancer screening has led to a dramatic increase in the detection of pre-invasive breast lesions. While mastectomy is almost guaranteed to treat the disease, more conservative approaches could be as effective if patients can be stratified based on risk of co-existing or recurrent invasive disease.Here we use a range of biomarkers to interrogate and classify purely non-invasive lesions (PNL) and those with co-existing invasive breast cancer (CEIN). Apart from Ductal Carcinoma In Situ (DCIS), relative homogeneity is observed. DCIS contained a greater spread of molecular subtypes. Interestingly, high expression of p-mTOR was observed in all PNL with lower expression in DCIS and invasive carcinoma while the opposite expression pattern was observed for TOP2A.Comparing PNL with CEIN, we have identified p53 and Ki67 as predictors of CEIN with a combined PPV and NPV of 90.48% and 43.3% respectively. Furthermore, HER2 expression showed the best concordance between DCIS and its invasive counterpart.We propose that these biomarkers can be used to improve the management of patients with pre-invasive breast lesions following further validation and clinical trials. p53 and Ki67 could be used to stratify patients into low and high-risk groups for co-existing disease. Knowledge of expression of more actionable targets such as HER2 or TOP2A can be used to design chemoprevention or neo-adjuvant strategies. Increased knowledge of the molecular profile of pre-invasive lesions can only serve to enhance our understanding of the disease and, in the era of personalised medicine, bring us closer to improving breast cancer care.