995 resultados para Cincinnati Astronomical Society.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the results of a model of the chemistry of deuterium-bearing molecules in hot molecular cores. It is found that because hydrogen- and deuterium-bearing molecules are destroyed by the same reactions at about the same rates, the initial fractionation present in ice mantles persists for over 10(4) yr. This is the case for a wide range of physical conditions, so it is safe to infer the fractionation on grain surfaces from observations of deuterated molecules in hot cores. The implications of the observed abundances of deuterium-bearing species in Orion are then discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The B5 dark cloud has been identified as a site of low-mass star formation. We report a survey of a selection of the molecular species modelled by the B5 dynamical and chemical model of Charnley et al. at the positions of circumstellar HCN clumps in B5 IRS1. All of the key species observed yield either abundances or upper limits to abundances below both the standard and the predicted values, appearing to show evidence of depletion and/or destruction if the transitions observed are thermalized. Our results are not in good agreement with the model, and they bring into question the interpretation of the structure of B5 IRS1 proposed by Fuller et al. It was expected that HCN clump C might exhibit a higher excitation than HCN clump A, since it appeared to be located within the blueshifted molecular outflow. However, there is no significant difference observed between the two clumps, suggesting that the near-infrared and optical nebulosity is evidence of a reflection nebula rather than shocked material in the outflow. Finally, it is observed that our results are more consistent with gas-grain models than with those models excluding gas-grain interaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Maps are presented of J=2-1 and J=3-2 (CO)-O-18 emission from the molecular environment of the bipolar nebula S106, together with complementary observations of the P-3(1)-P-3(0), C I emission. Line splitting observed extensively over the E molecular cloud suggests that it is best explained as the expanding remnant of a thick toroid surrounding the optical lobes. The poor correlation between the observed molecular line emission and dust continuum emission in the E cloud is probably due to a large temperature gradient. Strong C I emission from the protostellar candidate S106 FIR suggests the nearby presence of a powerful source of far-UV radiation, whose energy supply is unlikely to arise from gravitational contraction of a protostar. It is probable that this source is the star S106 LR, which also heats S106 FIR. There is evidence, in both C I and (CO)-O-18, for a predominantly blueshifted outflow from S106 IR, best interpreted as a stellar wind-driven shock into the toroidal remnant. (CO)-O-18 and (CO)-C-13 appear to be depleted, relative to canonical values for their abundances, in S106 FIR, despite its high optical extinction, which should discourage selective photodissociation. Elsewhere in the cloud the C I line profiles show a resemblance to those of (CO)-O-18, with intensity equivalent to a few photodissociation regions (PDRs) along the line of sight.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hot molecular cores in star-forming regions are known to have gas-phase chemical compositions determined by the evaporation of material from the icy mantles of interstellar grains, followed by subsequent reactions in the gas phase. Current models suggest that the evaporated material is rich in hydrogenated species, such as water, methane and methanol. In this paper, we report the detection of 14 rotational transitions of ethanol in the submillimetre spectrum of the molecular cloud associated with the ultra-compact H II region G34.3+0.15. We derive a rotation temperature of 125 K and a beam-averaged column density of 2.0x10(15) cm(-2), corresponding to a fractional abundance on the order of 4x10(-9). This large abundance, which is a lower limit due to the likelihood of beam dilution, cannot be made by purely gas-phase processes, and we conclude that the ethanol must be formed efficiently in the grain surface chemistry. Since it has been argued previously that methanol is formed via surface chemistry, it appears that alcohol formation may be a natural by-product of surface reactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hot molecular cores in star-forming regions are known to have gas-phase chemical compositions determined by the material evaporated from the icy mantles of interstellar grains, followed by subsequent reactions in the gas phase. Current models suggest that the evaporated material is rich in hydrogenated species. In this paper, we consider the chemistry induced in a hot core by the release of phosphine, PH3 from interstellar grains. We find that PH3 is rapidly destroyed by a series of reactions with atomic hydrogen and is converted, within 10(4) yr, into atomic P, and PO and PN, with P atoms being the most abundant species. Other P-bearing molecules can be formed in the hot gas, but on time-scales that are long compared to those of the hot cores.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the effects of varying the cosmic ray ionization rate in chemical models of dense interstellar clouds. In the absence of such ionization, a scenario which may be applicable to dark cloud cores, we find that chemi-ionization is able to drive a limited ion-neutral chemistry. Models of clouds in starburst galaxies, which may have enhanced cosmic ray fluxes, are also investigated and enable an upper limit to be derived for the cosmic ray ionization rate in M82. The derived value, which is about 700 times the typical value for Galactic molecular clouds, is in good agreement with that necessary to explain the recent observations of C I in this galaxy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent experiments on rapid neutral-neutral reactions involving the radical CN at low temperature and the neutral C atom at room temperature suggest that atom-neutral and radical-neutral reactions may be generally more rapid at low temperature than hitherto thought. We have included a variety of rapid neutral-neutral reactions in our gas-phase chemical models of quiescent, dense interstellar clouds. We find the calculated abundances of many molecules to be greatly changed from previous values. In particular, the peak 'early-time' abundances of organic molecules are reduced.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have observed DC3N and HC3N in a number of cold dust clouds in order to derive the degree of deuterium fractionation. We find that the ratio of DC3N to HC3N is large, at about 0.05 or more, and discuss the implications of this result for the synthesis of cyanoacetylene. The observations are most readily interpreted if the deuteration of HC3N is linked to that of cyclic C3H2, which is also observed to exhibit a large degree of deuterium fractionation. HC3N deuteration levels comparable with those we observed are found to he just compatible with the mechanism suggested by Howe & Millar, but with adjusted rate coefficients. Freeze-out on to grain surfaces is also considered, but produces widespread deuterium enhancement in many species. contrary to observed levels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The results of recent laboratory studies of the reactions of H+ and H-3+ with a number of molecular gases are interpreted from the viewpoint of interstellar chemistry. Many of the reactions of these ions result in the ionization and fragmentation of neutral reactant gases. Pseudo-time-dependent calculations of the chemistry in dense molecular clouds indicate that molecular abundances are reduced by the inclusion of such reactions, but generally by less than a factor of 5.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We test the hypothesis that methane is the source of the carbon observed in carbon-bearing molecules around oxygen-rich stars, by considering the synthesis of formaldehyde which is formed in the reaction between oxygen atoms and methyl radicals. We find that, provided that the parent methane abundance is large enough, millimetre-wave emission lines of H2CO should be detectable in such stars. We also consider the formation of other species, notably H2CN and H2CS, from methyl radicals, but conclude that they will be at least one order of magnitude less abundant than H2CO and therefore not detectable with current instrumentation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate new approaches to the deuteration of C3H2, HC3N and HC5N in dark clouds, following the suggestion that protonated HC3N might form different isomers, a linear structure (HC3NH+) being the most stable. We consider the effect of linear HC3NH+ and HC5NH+ on the formation of HC3N and HC5N, and find that deuteration ratios at approximately 10 K are reduced, in the case of HC3N to values significantly below those observed, such that a deuteration mechanism other than direct deuteron transfer is probably required for cold clouds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The observation by Meyer & Roch of NH in the interstellar clouds towards zeta Per and HD 27778 cannot be explained with conventional gas-phase chemistry models. A simple non-equilibrium model for the zeta Per cloud, which incorporates the grain-surface production of NH and OH or, alternatively, NH3 and H2O, is able to reproduce the abundances of all observed species (except CH+) quite accurately. Moreover, chemical models which include grain-surface reactions can reproduce the observed abundance not only of NH but also of CN, which is efficiently formed at low temperatures, initiated by the reaction of NH with C+. Pure gas-phase models and cloud interface models, in which NH and CH+ are formed in a warm and tenuous environment, fail to explain the observed high abundance of CN. Hence the observation of NH in zeta Per and HD 27778 provides evidence for the presence of grain-surface reactions leading to molecules other than H-2. It is predicted that NH2 and NH3 should have abundances not much below that of NH if NH3 instead of NH is formed on grains. With or without surface reactions, the column densities of H2O and C2H are expected to be about 10(13) cm-2, and these molecules may be detectable in the zeta Per cloud.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent laboratory data on the ion-neutral chemistry of PAH and fullerene ions and molecules have been incorporated into chemical kinetic models of interstellar clouds. The laboratory data show that the-second ionization potentials of many complex molecules are less than the first ionization potential of helium. Thus collisions between He+, generated by cosmic ray ionization, and PAH and fullerene neutrals produce doubly charged cations. I find that these cations, and also protonated neutrals, are abundant in dark clouds. If the recombination of electrons with doubly charged cations, which releases typically 14 eV of energy, is dissociative in nature, then PAH and fullerene species are destroyed m both diffuse and dense clouds on astronomically significant time-scales.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we investigate gas-phase chemistry in the remnant 'superwind' of a carbon-rich red giant star, during its transition to a planetary nebula. The interacting stellar winds model is used. It is found that during the first few hundred years of transition, significant abundances of a few small molecules and ions (e.g. CH+, CH2+, CH3+, CH, CH2, NH) may occur in the thin, dense, shocked shell of gas predicted by thiS model, but that most molecules observed in protoplanetary nebulae will be rapidly destroyed, through photodissociation by strong UV from the central star. If dense clumps are present during transition, they may allow the gas-phase formation and/or survival of small amounts of some molecules, such as HCN, CN, C2H2, and HC3N, until about 2000 yr after termination of the superwind; and young, fully developed planetary nebulae may show observable amounts of polyatomic molecules by this means. Such clumping may explain the existence of, e.g., HCN in NGC 7027.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have investigated the effects of depletion of the elements C, N and O on the chemical composition of dark clouds, using both isothermal and isochoric cloud models. Our work differs from previous approaches in that we have considered a much larger range of CNO depletions. We have included the chemistry of the ortho-and para-forms of H2 and the exothermic reaction between N+ and ortho-H2, which synthesizes NH3. In the isothermal models, the ortho:para ratio is very small at large depletions, but NH3 formation is still efficient owing to reactions between He+ and CN or HCN. In the isochoric models, the equilibrium temperature of the gas is larger, and a thermal ortho:para ratio, which is large enough to drive NH3 formation, results. In all cases, the fractional abundance of NH3 is close to 10(-8) and this may help to explain the puzzling observation that, in dark clouds, the column density of NH3 is always close to 10(15) cm-2.