1000 resultados para Cibicidoides spp., d18O


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we present a case study of three cold-water coral mounds in a juvenile growth stage on top of the Pen Duick Escarpment in the Gulf of Cadiz; Alpha, Beta and Gamma mounds. Although cold-water corals are a common feature on the adjacent cliffs, mud volcanoes and open slope, no actual living cold-water coral has been observed. This multidisciplinary and integrated study comprises geophysical, sedimentological and (bio)geochemical data and aims to present a holistic view on the interaction of both environmental and geological drivers in cold-water coral mound development in the Gulf of Cadiz. Coring data evidences (past or present) methane seepage near the Pen Duick Escarpment. Several sources and pathways are proposed, among which a stratigraphic migration through uplifted Miocene series underneath the escarpment. The dominant morphology of the escarpment has influenced the local hydrodynamics within the course of the Pliocene, as documented by the emplacement of a sediment drift. Predominantly during post-Middle Pleistocene glacial episodes, favourable conditions were present for mound growth. An additional advantage for mound formation near the top of Pen Duick Escarpment is presented by seepage-related carbonate crusts which might have offered a suitable substrate for coral settling. The spatially and temporally variable character and burial stage of the observed open reef frameworks, formed by cold-water coral rubble, provides a possible model for the transition from cold-water coral reef patches towards juvenile mound. These rubble "graveyards" not only act as sediment trap but also as micro-habitat for a wide range of organisms. The presence of a fluctuating Sulphate-Methane Transition Zone has an important effect on early diagenetic processes, affecting both geochemical and physical characteristics, transforming the buried reef into a solid mound. Nevertheless, the responsible seepage fluxes seem to be locally variable. As such, the origin and evolution of the cold-water coral mounds on top of the Pen Duick Escarpment is, probably more than any other NE Atlantic cold-water coral mound province, located on the crossroads of environmental (hydrodynamic) and geological (seepage) pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyzed the oxygen and carbon isotopic composition of planktonic and benthic foraminifers picked from 13 late Eocene to late Oligocene samples from DSDP Site 540 (23°49.73'N, 84°22.25'W, 2926 m water depth) from the Gulf of Mexico. An enrichment occurs in 18O of about 0.5 to 0.8 per mil in both benthic foraminifers and surface-dwelling planktonic foraminifers between the latest Eocene and early Oligocene. This early Oligocene maximum is followed by lower 18O values. A 1.2 per mil d13C decrease in both benthic and planktonic foraminiferal data occurs from the late Eocene to the late Oligocene. There is a correspondence of the 13C signal to deep-sea records; however, the amplitude of this change is greater than previously seen in deep-sea cores, possibly as a result of proximity to terrestrial sources of carbon. The covarying isotopic changes in both benthic and planktonic foraminifers suggest global causes, such as ice volume increases and increased terrestrial carbon input to the ocean. However, during the latter part of the record (early-late Oligocene), the increases in the benthic 18O without accompanying increases observed with planktonic foraminifers suggest that changes in only one part of the system occurred; one potential explanation being a decrease in bottom-water temperatures without concomitant changes in the surface waters. The 18O differences between species of planktonic foraminifers and the difference between planktonic and benthic 18O data indicate that diagenesis problems are minimal. These preliminary results are encouraging given that these cores are partially lithified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze five high-resolution time series spanning the last 1.65 m.y.: benthic foraminiferal delta18O and delta13O, percent CaCO3, and estimated sea surface temperature (SST) at North Atlantic Deep Sea Drilling Project site 607 and percent CaCO3 at site 609. Each record is a multicore composite verified for continuity by splicing among multiple holes. These climatic indices portray changes in northern hemisphere ice sheet size and in North Atlantic surface and deep circulation. By tuning obliquity and precession components in the delta18O record to orbital variations, we have devised a time scale (TP607) for the entire Pleistocene that agrees in age with all K/Ar-dated magnetic reversals to within 1.5%. The Brunhes time scale is taken from Imbrie et al. [1984], except for differences near the stage 17/16 transition (0.70 to 0.64 Ma). All indicators show a similar evolution from the Matuyama to the Brunhes chrons: orbital eccentricity and precession responses increased in amplitude; those at orbital obliquity decreased. The change in dominance from obliquity to eccentricity occurred over several hundred thousand years, with fastest changes around 0.7 to 0.6 Ma. The coherent, in-phase responses of delta18O, delta13O, CaCO3 and SST at these rhythms indicate that northern hemisphere ice volume changes have controlled most of the North Atlantic surface-ocean and deep-ocean responses for the last 1.6 m.y. The delta13O, percent CaCO3, and SST records at site 607 also show prominent changes at low frequencies, including a prominent long-wavelength oscillation toward glacial conditions that is centered between 0.9 and 0.6 Ma. These changes appear to be associated neither with orbital forcing nor with changes in ice volume.