996 resultados para Chemistry, Organic|Chemistry, Pharmaceutical


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Reflectance spectra collected during ODP Leg 172 were used in concert with solid phase iron chemistry, carbonate content, and organic carbon content measurements to evaluate the agents responsible for setting the color in sediments. Factor analysis has proved a valuable and rapid technique to detect the local and regional primary factors that influence sediment color. On the western North Atlantic drifts, sediment color is the result of primary mineralogy as well as diagenetic changes. Sediment lightness is controlled by the carbonate content while the hue is primarily due to the presence of hematite and Fe2+/Fe3+ changes in clay minerals. Hematite, most likely derived from the Permo-Carboniferous red beds of the Canadian Maritimes, is differentially preserved at various sites due to differences in reductive diagenesis and dilution by other sedimentary components. Various intensities for diagenesis result from changes in organic carbon content, sedimentation rates, and H2S production via anaerobic methane oxidation. Iron monosulfides occur extensively at all high sedimentation sites especially in glacial periods suggesting increased high terrigenous flux and/or increased reactive iron flux in glacials.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Production (abundance and biomass) and net calcification rates of the coccolithophorid Pleurochrysis carterae under different partial pressures of CO2 (pCO2) were examined using short (15, 24 and 39 h), long (7 d) and dark (7 d) incubation experiments. Short incubations were conducted at ambient, 500 and 820 ppm pCO2 levels in natural seawater that was enriched with nutrients and inoculated with P. carterae. Long incubations were conducted at ambient and 1200 ppm pCO2 levels in natural seawater (0.2 µm filtered as well as unfiltered) that was enriched with nutrients and inoculated with P. carterae. Dark incubations were conducted at ambient and 1200 ppm pCO2 in unfiltered seawater that was inoculated with P. carterae. The abundance and biomass of coccolithophorids increased with pCO2 and time. The abundance and biomass of most noncalcifying phytoplankton also increased, and were hardly affected by CO2 inputs. Net calcification rates were negative in short incubations during the pre-bloom phase regardless of pCO2 levels, indicating dissolution of calcium carbonate. Further, the negative values of net calcification in short incubations became less negative with time. Net calcification rates were positive in long incubations during blooms regardless of pCO2 level, and the rate of calcification increased with pCO2. Our results show that P. carterae may adapt to increased (~1200 ppm) pCO2 level with time, and such increase has little effect on the ecology of noncalcifying groups and hence in ecosystem dynamics. In dark incubations, net calcification rates were negative, with the magnitude being dependent on pCO2 levels.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

To increase our understanding of the mechanisms that control the distribution of Al and Ti within marine sediment, we performed sequential extractions targeting the chemical signatures of the loosely bound, exchangeable, carbonate, oxide, organic, opal, and residual fraction of sediment from a carbonate-dominated regime (equatorial Pacific) and from a mixed opal-terrigenous regime (West Antarctic Peninsula). We observe a systematic partitioning of Al and Ti between sediment phases that is related to bulk Al/Ti. We show that, where we can quantify an Al(excess) component, the dissolved Al is preferentially affiliated with the oxide fraction, resulting in Al/Ti molar ratios of 500-3000. This is interpreted as the result of surface complexation in the water column of dissolved Al onto oxyhydroxides. We also observe a previously undetected Ti(excess) with as much as 80% of the total Ti in the organic fraction, which is most likely a function of metal-organic colloidal removal from the water column. In samples where the excess metals are obscured by the detrital load, the Al and Ti are almost exclusively found in the residual phase. This argues for the paired removal of Al (preferentially by the oxide component) and Ti (preferentially by the organic component) from the water column by settling particulate matter. This research builds upon earlier work that shows changes in the bulk ratio of Al to Ti in carbonate sediment from the central-equatorial Pacific that coincide with changes in the sedimentary bulk accumulation rate (BAR). The ratios that are observed are as much as three times higher than typical shale values, and were interpreted as the result of scavenging of dissolved Al onto particles settling in the water column. Because this non-terrigenous Al(excess) accounts for up to 50% of the total sedimentary Al inventory and correlates best with BAR, the bulk Al/Ti may be a sensitive tracer of particle flux and, therefore, export production. Because we show that the excess metals are the result of scavenging processes, the bulk Al/Ti may be considered a sensitive proxy for this region.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Leg 119 of the Ocean Drilling Program (ODP) provided the first opportunity to study the interstitial-water chemistry of the eastern Antarctic continental margin. Five sites were cored in a northwest-southeast transect of Prydz Bay that extended from the top of the continental slope to within 30 km of the coastline. Geological studies of the cores reveal a continental margin that has evolved through terrestrial, glacial, and glacial-marine environments. Chemical and stable isotopic analyses of the interstitial-waters were performed to determine the types of depositional environments and the diagenetic and hydrologic processes that are operating in this unusual marine environment. Highly compacted glacial sediments provide an effective barrier to the vertical diffusion of interstitial-water solutes. Meteoric water from the Antarctic continent appears to be flowing into Prydz Bay sediments through the sequence of terrestrial sediments that lie underneath the glacial sediments. The large amounts of erosion associated with glacial advances appear to have had the effect of limiting the amount of marine organic matter that is incorporated into the sediments on the continental shelf. Although all of the sites cored in Prydz Bay exhibit depletions in dissolved sulfate with increasing depth, the greatest bacterial activity is associated with a thin layer of diatom ooze that coats the seafloor of the inner bay. Results of alkalinity modeling, thermodynamic calculations, and strontium analyses indicate that (1) ocean bottom waters seaward of Site 740 are undersaturated with respect to both calcite and aragonite, (2) interstitial waters at each site become saturated or supersaturated with respect to calcite and aragonite with increasing depth, (3) precipitation of calcium carbonate reduces the alkalinity of the pore waters with increasing depth, and (4) recrystallization of aragonite to calcite accounts for 24% of the pore-water strontium. Weathering of unstable terrestrial debris and cation exchange between clay minerals and pore fluids are the most probable chemical processes affecting interstitial water cation gradients.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A mass budget was constructed for organic carbon on the upper slope of the Middle Atlantic Bight, a region thought to serve as a depocenter for fine-grained material exported from the adjacent shelf. Various components of the budget are internally consistent, and observed differences can be attributed to natural spatial variability or to the different time scales over which measurements were made. The flux of organic carbon to the sediments in the core of the depocenter zone, at a water depth of 1000 m, was measured with sediment traps to be 65 mg C m**-2 day**-1, of which 6-24 mg C m**-2 day**-1 is buried. Oxygen fluxes into the sediments, measured with incubation chambers attached to a free vehicle lander, correspond to total carbon remineralization rates of 49-70 mg C m**-2 day**-1. Carbon remineralization rates estimated from gradients of Corg within the mixed layer, and from gradients of dissolved ammonia and phosphate in pore waters, sum to only 4-6 mg C m**-2 day**-1. Most of the Corg remineralization in slope sediments is mediated by bacteria and takes place within a few mm of the sediment-water interface. Most of the Corg deposited on the upper slope sediments is supplied by lateral transport from other regions, but even if all of this material were derived from the adjacent shelf, it represents <2% of the mean annual shelf productivity. This value is further lowered by recognizing that as much as half of the Corg deposited on the slope is refractory, having originated by reworking from older deposits. Refractory Corg arrives at the sea bed with an average 14C age 600-900 years older than the pre-bomb 14C age of DIC in seawater, and has a mean life in the sediments with respect to biological remineralization of at least 1000 years. Labile carbon supplied to the slope, on the other hand, is rapidly and (virtually) completely remineralized, with a mean life of < 1 year. Carbon-14 ages of fine-grained carbonate and organic carbon present within the interstices of shelf sands are consistent with this material acting as a source for the old carbon supplied to the slope. Winnowing and export of reworked carbon may contribute to the often-described relationship between organic carbon preservation and accumulation rate of marine sediments.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Analytical challenges in obtaining high quality measurements of rare earth elements (REEs) from small pore fluid volumes have limited the application of REEs as deep fluid geochemical tracers. Using a recently developed analytical technique, we analyzed REEs from pore fluids collected from Sites U1325 and U1329, drilled on the northern Cascadia margin during the Integrated Ocean Drilling Program (IODP) Expedition 311, to investigate the REE behavior during diagenesis and their utility as tracers of deep fluid migration. These sites were selected because they represent contrasting settings on an accretionary margin: a ponded basin at the toe of the margin, and the landward Tofino Basin near the shelf's edge. REE concentrations of pore fluid in the methanogenic zone at Sites U1325 and U1329 correlate positively with concentrations of dissolved organic carbon (DOC) and alkalinity. Fractionations across the REE series are driven by preferential complexation of the heavy REEs. Simultaneous enrichment of diagenetic indicators (DOC and alkalinity) and of REEs (in particular the heavy elements Ho to Lu), suggests that the heavy REEs are released during particulate organic carbon (POC) degradation and are subsequently chelated by DOC. REE concentrations are greater at Site U1325, a site where shorter residence times of POC in sulfate-bearing redox zones may enhance REE burial efficiency within sulfidic and methanogenic sediment zones where REE release ensues. Cross-plots of La concentrations versus Cl, Li and Sr delineate a distinct field for the deep fluids (z > 75 mbsf) at Site U1329, and indicate the presence of a fluid not observed at the other sites drilled on the Cascadia margin. Changes in REE patterns, the presence of a positive Eu anomaly, and other available geochemical data for this site suggest a complex hydrology and possible interaction with the igneous Crescent Terrane, located east of the drilled transect.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Benthic fluxes and pore-water compositions of silicic acid, nitrate and phosphate were investigated for surface sediments of the abyssal Arabian Sea during four cruises (1995-1998). Five sites located in the northern (NAST), western (WAST), central (CAST), eastern (EAST), and southern (SAST) Arabian Sea were revisited during intermonsoonal periods after the NE- and SW-Monsoon. At these sites, benthic fluxes of remineralized nutrients from the sediment to the bottom water of 36-106, 102-350 and 4-16 mmol/m**2/yr were measured for nitrate, silicic acid and phosphate, respectively. The benthic fluxes and pore-water compositions showed a distinct regional pattern. Highest fluxes were observed in the western and northern region of the Arabian Sea, whereas decreasing fluxes were derived towards the southeast. At WAST, the general temporal pattern of primary production, related to the NE- and SW-Monsoon, is reflected by benthic fluxes. In contrast, at sites NAST, SAST, CAST, and EAST a temporal pattern of fluxes in response to the monsoon is not obvious. Our results reveal a clear coupling between the general regional pattern of production in surface waters and the response of the benthic environment, as indicated by the flux of remineralized nutrients, though a spatially differing degree of decoupling during transport and remineralization of particulate organic matter and biogenic opal was observed. This has to be taken into account regarding budget calculations and paleoceanographic topics.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Sedimentation in the central Pacific during the Jurassic and Early Cretaceous was dominated by abundant biogenic silica. A synthesis of the stratigraphy, lithology, petrology, and geochemistry of the radiolarites in Sites 801 and 800 documents the sedimentation processes and trends in the equatorial central Pacific from the Middle Jurassic through the Early Cretaceous. Paleolatitude and paleodepth reconstructions enable comparisons with previous DSDP sites and identification of the general patterns of sedimentation over a wide region of the Pacific. Clayey radiolarites dominated sedimentation on Pacific oceanic crust within tropical paleolatitudes from at least the latest Bathonian through Tithonian. Radiolarian productivity rose to a peak within 5° of the paleoequator, where accumulation rates of biogenic silica exceeded 1000 g/cm**2/m.y. Wavy-bedded radiolarian cherts developed in the upper Tithonian at Site 801 coinciding with the proximity of this site to the paleoequator. Ribbon-bedding of some radiolarian cherts exposed on Pacific margins may have formed from silicification of radiolarite deposited near the equatorial high-productivity zone where radiolarian/clay ratios were high. Silicification processes in sediments extensively mixed by bioturbation or enriched in clay or carbonate generally resulted in discontinuous bands or nodules of porcellanite or chert, e.g., a "knobby" radiolarite. Ribbon-bedded cherts require primary alternations of radiolarian-rich and clay-rich layers as an initial structural template, coupled with abundant biogenic silica in both layers. During diagenesis, migration of silica from clay-rich layers leaves radiolarian "ghosts" or voids, and the precipitation in adjacent radiolarite layers results in silicification of the inter-radiolarian matrix and infilling of radiolarian tests. Alternations of claystone and clay-rich radiolarian grainstone were deposited during the Callovian at Site 801 and during the Berriasian-Valanginian at Site 800, but did not silicify to form bedded chert. Carbonate was not preserved on the Pacific oceanic floor or spreading ridges during the Jurassic, perhaps due to an elevated level of dissolved carbon dioxide. During the Berriasian through Hauterivian, the carbonate compensation depth (CCD) descended to approximately 3500 m, permitting the accumulation of siliceous limestones at near-ridge sites. Carbonate accumulation rates exceeded 1500 g/cm**2/m.y. at sites above the CCD, yet there is no evidence of an equatorial carbonate bulge during the Early Cretaceous. In the Barremian and Aptian, the CCD rose, coincident with the onset of mid-plate volcanic activity. Abundance of Fe and Mn and the associated formation of authigenic Fe-smectite clays was a function of proximity to the spreading ridges, with secondary enrichments occurring during episodes of spreading-center reorganizations. Callovian radiolarite at Site 801 is anomalously depleted in Mn, which resulted either from inhibited precipitation of Mn-oxides by lower pH of interstitial waters induced by high dissolved oceanic CO2 levels or from diagenetic mobilization of Mn. Influx of terrigenous (eolian) clay apparently changed with paleolatitude and geological age. Cyclic variations in productivity of radiolarians and of nannofossils and in the influx of terrigenous clay are attributed to Milankovitch climatic cycles of precession (20,000 yr) and eccentricity (100,000 yr). Diagenetic redistribution of biogenic silica and carbonate enhanced the expression of this cyclic sedimentation. Jurassic and Lower Cretaceous sediments were deposited under oxygenated bottom-water conditions at all depths, accompanied by bioturbation and pervasive oxidation of organic carbon and metals. Despite the more "equable" climate conditions of the Mesozoic, the super-ocean of the Pacific experienced adequate deep-water circulation to prevent stagnation. Efficient nutrient recycling may have been a factor in the abundance of radiolarians in this ocean basin.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper reviews Japanese limnological studies mainly in the McMurdo and Syowa oases, with special emphasis on the nutrient distribution. Generally, the chemical composition of the major ionic components in the coastal lakes and ponds is similar to that in seawater, while that in inland Dry Valley lakes and ponds of the McMurdo Oasis is abundant in calcium, magnesium and sulfate ions. The former can be explained by the direct influences of sea salts, while the latter is mainly attributable to the accumulation of atmospheric salts. Most saline lakes are meromictic. Dissolved oxygen concentrations in the upper layers are saturated or supersaturated, but the bottom layers are anoxic and often hydrogen sulfide occurs. The concentrations of nutrients vary largely not only among the lakes but also with depth. Silicate-Si, which is generally abundant in all freshwater and saline lakes, may be due to erosions of soils and rocks. Nitrite-N concentrations in both freshwater and saline lakes are generally low. Nitrate-N concentrations in the oxic layers of the inland saline lakes in the McMurdo Oasis arc often high, but not high in the coastal saline lakes of the Syowa and Vestfold oases. The abundance of phosphate-P and ammonium-N in the bottom stagnant layers of saline lakes can be explained by the accumulation of microbially released nutrients due to the decomposition of organic substances. Nutrients are supplied mainly from meltstreams in the catchment areas, and are proved to play an important role in primary production.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Geological and geophysical data collected during Deep Sea Drilling Project (DSDP) Leg 70 indicate that hydrothermal solutions are upwelling through the sediments of the mounds hydrothermal field (Sites 506, 507, and 509) and downwelling in the low heat-flow zone to the south (Site 508). Pore-water data are compatible with these conclusions. Pore waters at mounds sites are enriched in Ca and depleted in Mg relative to both seawater and Site 508 pore waters. These anomalies are believed to reflect prior reaction of the interstitial waters with basement rocks. The mounds solutions are also enriched in iron, which is probably hydrothermal and en route to forming nontronite. Concentrations of Si and NH3 in mounds pore water increase upcore as a result of the addition of dissolving biogenic debris to ascending hydrothermal solutions. Some low heat-flow pore-water samples (Site 508) are enriched in Ca and depleted in Mg. These anomalies likely reflect the presence of pockets of hydrothermal solutions in areas otherwise dominated by downwelling bottom water.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Studies of interstitial waters obtained from DSDP Leg 64 drill sites in the Gulf of California have revealed information both on early diagenetic processes in the sediments resulting from the breakdown of organic matter and on hydrothermal interactions between sediments and hot doleritic sill intrusions into the sediments. In all the sites drilled sulfate reduction occurred as a result of rapid sediment accumulation rates and of relatively high organic carbon contents; in most sites methane production occurred after sulfate depletion. Associated with this methane production are high values of alkalinity and high concentrations of dissolved ammonia, which causes ion exchange processes with the solid phases leading to intermediate maxima in Mg++, K+, Rb+, and Sr++(?). Though this phenomenon is common in Leg 64 drill sites, these concentration reversals had been noticed previously only in Site 262 (Timor Trough) and Site 440 (Japan Trench). Penetrating, hot dolerite sills have led to substantial hydrothermal alteration in sediments at sites drilled in the Guaymas Basin. Site 477 is an active hydrothermal system in which the pore-water chemistry typically shows depletions in sulfate and magnesium and large increases in lithium, potassium, rubidium, calcium, strontium, and chloride. Strontium isotope data also indicate large contributions of volcanic matter and basalt to the pore-water strontium concentrations. At Sites 478 and 481 dolerite sill intrusions have cooled to ambient temperatures but interstitial water concentrations of Li+, Rb+, Sr++ , and Cl- show the gradual decay of a hydrothermal signal that must have been similar to the interstitial water chemistry at Site 477 at the time of sill intrusion. Studies of oxygen isotopes of the interstitial waters at Site 481 indicate positive values of d18O (SMOW) as a result of high-temperature alteration reactions occurring in the sills and the surrounding sediments. A minimum in dissolved chloride at about 100-125 meters sub-bottom at Sites 478, 481, and particularly Site 479 records a possible paleosalinity signal, associated with an event that substantially lowered salinities in the inner parts of the Gulf of California during Quaternary time.