845 resultados para Cellulose Composites


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the synthesis of hydrogels of cellulose acetate (AC) crosslinked with 1,2,4,5-benzenotetracarboxylic dianhydride (PMDA). The crosslinking reaction was monitored by FTIR. Analysis of aromatic fragments from the alkaline hydrolysis of the gels by UV spectroscopy indicated that an increase in the stoichiometric ratio of dianhydride resulted in higher degrees of crosslinking. The non-porous nature of the gels was confirmed by analysis of nitrogen adsorption. Water absorption isotherms showed that as the temperature and degree of crosslinking increased, the percentage of water absorbed at equilibrium (%Seq) also increased. The hydrogels presented second order swelling kinetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composites strengthened with nanocellulose have been developed with the aim of improving mechanical, barrier, and thermal properties of materials. This improvement is primarily due to the nanometric size and the high crystallinity of the incorporated cellulose. Cassava starch films plasticized with glycerol and incorporated with nanocellulose from coconut fibers were developed in this study. The effect of this incorporation was studied with respect to the water activity, solubility, mechanical properties, thermal analysis, and biodegradability. The study demonstrated that the film properties can be significantly altered through the incorporation of small concentrations of nanocellulose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives of this work were to investigate the microstructure, crystallinity and thermal stability of nanofibrillated cellulose obtained from oat hulls using bleaching and acid hydrolysis at a mild temperature (45 ºC) followed by ultrasonication. The oat hulls were bleached with peracetic acid, and after bleaching, the compact structure around the cellulosic fibers was removed, and the bundles became individualized. The extraction time (30 or 60 min) did not affect the properties of the nanofibrillated cellulose, which presented a higher crystallinity index and thermal stability than the raw material (oat hulls). The nanocellulose formed interconnected webs of tiny fibers with diameters of 70-100 nm and lengths of several micrometers, producing nanofibers with a relatively high aspect ratio, thus indicating that these materials are suitable for polymer reinforcement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bionanocomposites derived from poly(L-Lactide) (PLLA) were reinforced with chemically modified cellulose nanocrystals (m-CNCs). The effects of these modified cellulose nanoparticles on the mechanical and hydrolytic degradation behavior of polylactide were studied. The m-CNCs were prepared by a method in which hydrolysis of cellulose chains is performed simultaneously with the esterification of hydroxyl groups to produce modified nanocrystals with ester groups. FTIR, elemental analysis, TEM, XRD and contact angle measurements were used to confirm and characterize the chemical modifications of the m-CNCs. These bionanocomposites gave considerably better mechanical properties than neat PLLA based on an approximately 100% increase in tensile strength. Due to the hydrophobic properties of the esterified nanocrystals incorporated into a polymer matrix, it was also demonstrated that a small amount of m-CNCs could lead to a remarkable decrease in the hydrolytic degradation rate of the biopolymer. In addition, the m-CNCs considerably delay the degradation of the nanocomposite by providing a physical barrier that prevents the permeation of water, which thus hinders the overall absorption of water into the matrix. The results obtained in this study show the nanocrystals can be used to reinforce polylactides and fine-tune their degradation rates in moist or physiological environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of polyacrylamide-cellulose acetate hydrogels by precipitation polymerization in acetone solution is reported herein. These hydrogels exhibit smaller swelling ratios and larger compression moduli than homo polyacrylamide hydrogels. For cellulose acetate concentrations above 20 wt.%, hydrogels with N,N'-methylenebisacrylamide as a crosslinker exhibit swelling ratios and compression moduli similar to those of the hydrogels without the crosslinker. A possible explanation for this behavior is that cellulose acetate crosslinks polyacrylamide via free-radical reaction. The hydrogels obtained without the N,N'-methylenebisacrylamide crosslinker exhibit compression moduli up to 1.7 MPa, making them suitable for tissue engineering applications such as cartilage replacement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Haavan jyväiskudoksen muodostuminen – Hydroksiapatiittipinnoi-tetun selluloosasienen vaikutus solujen erilaistumiseen paranemisprosessin aikana Etsittäessä uusia luun bioyhteensopivia täytemateriaaleja selluloosasieni päällystettiin luun koostumusta muistuttavalla runsaasti piitä sisältävällä hydroksiapatiittikerroksella. Vastoin odotuksia hydroksiapatiittipinnoitettu selluloosa ei parantanut luun kasvua, vaan päinvastoin ylläpiti tulehdusta ja sidekudossolujen hakeutumista vamma-alueelle. Ihon alle implantoituna sama sienimateriaali edisti merkittävästi haavan verekkään jyväiskudoksen kasvua. Tämän löydöksen perusteella hydroksiapatiittipinnoitetun selluloosasienen vaikutusta haavan soluihin paranemisprosessin aikana tutkittiin tarkemmin ja havaittiin, että tulehdussolujen lisäksi sieniin kertyi tavallista enemmän sekä hematopoieettisia että mesenkymaalisia kantasoluja. Hematopoieettiset kantasolut sijaitsevat luuytimessä lähellä luun sisäpintaa. Luun hydroksiapatiitista vapautuu kalsiumioneja luun jatkuvan fysiologisen uudismuodostuksen ja hajottamisen yhteydessä. Kantasolut etsiytyvät luuytimeen kalsiumia aistivien reseptorien välityksellä. Koska luun pintakerrosta muistuttavasta hydroksiapatiittipinnoitteesta vapautuu kalsiumia, tämän ajateltiin toimivan selityksenä sille, että hematopoieettiset kantasolut hakeutuvat runsaslukuisesti juuri hydroksiapatiittipinnoitettuihin selluloosasieniin. Tämän hypoteesin mukaisesti hydroksiapatiittipinnoitettujen selluloosapalkkien läheisyydestä löydettiin suuria määriä kalsiumreseptoreja sisältäviä soluja. Jatkotutkimuksissa todettiin lisäksi, että hematopoieettiset kantasolut pystyivät sienissä erilaistumaan hemoglobiinia tuottaviksi soluiksi. Havaittujen punasolulinjan merkkiaineiden perusteella näyttäisikin siltä, että haavan paranemiskudoksessa tapahtuu paranemisen aikana ekstramedullaarista erytropoieesia. Nämä soluja ohjaavat vaikutukset saattavat olla hyödyllisiä vaikeasti paranevien haavojen hoidossa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The search for low subjectivity area estimates has increased the use of remote sensing for agricultural monitoring and crop yield prediction, leading to more flexibility in data acquisition and lower costs comparing to traditional methods such as census and surveys. Low spatial resolution satellite images with higher frequency in image acquisition have shown to be adequate for cropland mapping and monitoring in large areas. The main goal of this study was to map the Summer crops in the State of Paraná, Brazil, using 10-day composition of NDVI SPOT Vegetation data for 2005/2006, 2006/2007 and 2007/2008 cropping seasons. For this, a supervised digital classification method with Parallelepiped algorithm in multitemporal RGB image composites was used, in order to generate masks of Summer cultures for each 10-day composition. Accuracy assessment was performed using Kappa index, overall accuracy and Willmott's concordance index, resulting in good levels of accuracy. This methodology allowed the accomplishment, with free and low resolution data, of the mapping of Summer cultures at State level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deep bedding is a swine alternative production, especially in the finishing phase, whose byproduct can be recycled, reducing the environmental impact. The objectives of this study were to characterize the ash coming from the controlled burning of the swine deep bedding (SDBA) based on rice husk, and to evaluate their performance in composites as a partial substitute for Portland cement (PC). To measure the differences between SDBA and rice husk ash (RHA) as a reference, we have characterized: particle size distribution, real specific density, x-ray diffraction, electrical conductivity, scanning electron microscopy, chemical analysis and loss on ignition. Samples were prepared for two experimental series: control, and another one with the partial replacement of 30% of SDBA in relation to the mass of the Portland cement. According to the results obtained for physical and mechanical characterization, the composites with SDBA can be used as a constructive element in the rural construction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen sulfide is toxic and hazardous pollutant. It has been under great interest for past few years because of all the time tighten environmental regulations and increased interest of mining. Hydrogen sulfide gas originates from mining and wastewater treatment systems have caused death in two cases. It also causes acid rains and corrosion for wastewater pipelines. The aim of this master thesis was to study if chemically modified cellulose nanocrystals could be used as adsorbents to purify hydrogen sulfide out from water and what are the adsorption capacities of these adsorbents. The effects of pH and backgrounds on adsorption capacities of different adsorbents are tested. In theoretical section hydrogen sulfide, its properties and different purification methods are presented. Also analytical detection methods for hydrogen sulfide are presented. Cellulose nano/microcrystals, properties, application and different modification methods are discussed and finally theory of adsorption and modeling of adsorption is shortly discussed. In experimental section different cellulose nanocrystals based adsorbents are prepared and tested at different hydrogen sulfide concentrations and in different conditions. Result of experimental section was that the highest adsorption capacity at one component adsorption had wet MFC/CaCO3. At different pH the adsorption capacities of adsorbents changed quite dramatically. Also change of hydrogen sulfide solution background did have effect on adsorption capacities. Although, when tested adsorbents’ adsorption capacities are compared to those find in literatures, it seems that more development of MFC based adsorbents is needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Papper kan anses vara ett av de mest använda materialen i det dagliga livet. Tidskrifter, tidningar, böcker och diverse förpackningar är några exempel på pappersbaserade produkter. Papperets egenskaper måste anpassas till användningsändamålet. En tidskrift kräver t.ex. hög ljushet, opacitet och en slät yta hos papperet, medan dessa egenskaper är mindre viktiga för en dagstidning. Allt tryckpapper behöver vissa mekaniska egenskaper för att tåla vidarebearbetning såsom kalandrering, tryckning och vikning. Man kan bestryka papper för att förbättra dess optiska egenskaper och tryckbarhetsegenskaper. Vid bestrykning appliceras en dispersion av mineralpigment och polymerbindemedel som ett tunt lager på papperets yta. Bestrykningsskiktet kan ses som ett komplext, poröst kompositmaterial som även bidrar till papperets mekaniska egenskaper och dess processerbarhet i diverse konverteringsoperationer. Kravet på framställning av förmånligt papper med tillräckliga styrkeegenskaper ställer allt högre krav på optimeringen av pappersbestrykningsskiktets egenskaper och produktionskostnader. Målet med detta arbete var att förstå sambandet mellan pigmentbestrykningsskiktets mikrostruktur och dess makroskopiska, mekaniska egenskaper. Resultaten visar att adhesionen i gränsytan mellan pigment och bindemedel är kritisk för bestrykningsskiktets förmåga att bära mekanisk belastning. Polära vätskor är vanliga i tryckfärger och kan, eftersom de påverkar syra/bas-interaktionerna mellan pigment och latexbindemedel, försvaga denna adhesion. Resultaten tyder på att ytstyrkan hos bestruket papper kan höjas genom användning av bifunktionella dispergeringsmedel för mineralpigment. Detta medför inbesparingar i pappersproduktionen eftersom mängden bindemedel, den dyraste komponenten i bestrykningsskiktet, kan minskas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper describes an integrated micro/macro mechanical study of the elastic-viscoplastic behavior of unidirectional metal matrix composites (MMC). The micromechanical analysis of the elastic moduli is based on the Composites Cylinder Assemblage model (CCA) with comparisons also draw with a Representative Unit Cell (RUC) technique. These "homogenization" techniques are later incorporated into the Vanishing Fiber Diameter (VFD) model and a new formulation is proposed. The concept of a smeared element procedure is employed in conjunction with two different versions of the Bodner and Partom elastic-viscoplastic constitutive model for the associated macroscopic analysis. The formulations developed are also compared against experimental and analytical results available in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon Fibre Reinforced Carbon (CFRC) Composites are increasing their applications due to their high strength and Young’s Modulus at high temperatures in inert atmosphere. Although much work has been done on processing and structure and properties relationship, few studies have addressed the modelling of mechanical properties. This work is divided in two parts. In the first part, a modelling of mechanical properties was carried out for two bi-directional composites using a model based on the Bernoulli-Euler theory for symmetric laminated beams. In the second part, acoustic emission (AE) was used as an auxiliary technique for monitoring the failure process of the composites. Differences in fracture behaviour are reflected in patterns of AE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber reinforced polymer composites have been used in many applications, such as in automobile, aerospace and naval industries, due basically to their high strength-to-weight and modulus-to-weight, among other properties. Even though particles are usually not able to lead to the level of reinforcement of fibers, particle reinforced polymer composites have been proposed for many new applications due to their low cost, easy fabrication and isotropic properties. In this work, polymer composites were prepared by incorporating glass particles of different morphologies on poly(aryl sulfones) matrices. Particles with aspect ratios equal to 1, 2.5 and 10 were used. The prepared composites were characterized using electron microscopy and thermal analysis. Mechanical properties of the composites were evaluated using a four-point bending test. The thermo-mechanical behavior of the obtained composites was also investigated. The results showed that the morphology of the particles alter significantly the mechanical properties of composites. Particles with larger values of aspect ratio led to large elastic modulus but low levels of strain at failure. This result was explained by modeling the thermo-mechanical behavior of the composites using a viscoelastic model. Parameters of the model, obtained from a Cole-Cole type of plot, demonstrated that interactions at the polymer-reinforcing agent interface were higher for composites with large aspect ratio particles. Higher levels of interactions at interfaces can lead to higher degrees of stress transfer and, consequently, to composites with large elastic modulus, as experimentally observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of this thesis is to study the effect of mineral fillers on the properties of extruded wood-polypropylene composites (WPC). The studied minerals are Talc, Calcite (CaCO3), two quantities of Wollastonite and Soapstone, and the level of mineral addition is 20 w-%. The study shows that mineral fillers can be used to modify and improve the properties of woodplastic composites. Especially the moisture-related properties of WPCs were found to be improved significantly by mineral addition. As the WPCs of the studied type are commonly used in outdoor applications, this is of importance in terms of usability. In machining, the addition of two minerals retained the surface roughness at same level throughout the test, indicating a favorable effect on machinability. The use of hard minerals shortened the tool life in machining. In general, a modest increase in density was observed. In many of the studied properties, no apparent influence of mineral addition was found, indicating that the properties were not weakened. An overall result was that talc showed the best overall performance, indicating that it can be used as an active filler improving most of the studied properties, especially moisture resistance. Calcite was found to have nearly similar performance. According to the findings, mineral addition to wood-plastic composites appears to be beneficial; especially moisture resistance can be enhanced without diminishing the other properties or usability in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellulose fiber-silica nanocomposites with novel mechanical, chemical and thermal properties have potential to be widely applied in different area. Monodispered silica nanoparticles play an important role in enhancing hybrids properties of hardness, strength, thermal stability etc. On the other hand, cellulose is one of the world’s most abundant and renewable polymers and possesses several unique properties required in many areas and biomedicine. The aim of this master thesis is to study if silica particles from reaction of sodium silicate and sulphuric acid can be adsorbed onto cellulose fiber surfaces via in situ growth. First, nanosilica particles were synthesized. Effect of pH and silica contents were tested. In theoretical part, introduction of silica, methods of preparation of nanosilica from sodium silicate, effect factors and additives were discussed. Then, cellulose fiber-silica nanocomposites were synthesis via route from sodium silicate and route silicic acid. In the experiment of route from sodium silicate, the effects of types of sodium silicate, pH and target ratio of silica to fiber were investigated. From another aspect, the effects of types of sodium silicate, fiber concentration in mixture solution and target ratio of silica to fiber were tested in the experiment of route from silicic acid. Samples were investigated via zeta potential measurement, particle size distribution, ash content measurement and Scanning Electron Microscopy (SEM). The Results of the experiment of preparing silica sol were that the particle size of silica sol was smaller prepared in pH 11.7 than that prepared in pH 9.3. Then in the experiment of synthesis of cellulose fiber-silica nanocomposites, it was concluded that the zeta potential of all the samples were around -16 mV and the highest ash content of all the samples was only 1.4%. The results of SEM images showed only a few of silica particles could be observed on the fiber surface, which corresponded to the value of ash content measurement.