964 resultados para Cell retention systems
Resumo:
BACKGROUND AND OBJECTIVES The elective treatment of patients with post-transplant lymphoproliferative disorders is controversial. The purpose of this trial was to evaluate the efficacy of treatment with extended doses of rituximab adapted to the response in patients with post-transplant lymphoproliferative disorders after solid organ transplantation. DESIGN AND METHODS This was a prospective, multicenter, phase II trial. Patients were treated with reduction of immunosuppression and four weekly infusions of rituximab. Those patients who did not achieve complete remission (CR) received a second course of four rituximab infusions. The primary end-point of the study was the CR rate. RESULTS Thirty-eight patients were assesable. One episode of grade 4 neutropenia was the only severe adverse event observed. After the first course of rituximab, 13 (34.2%) patients achieved CR, 8 patients did not respond, and 17 patients achieved partial remission. Among those 17 patients, 12 could be treated with a second course of rituximab, and 10 (83.3%) achieved CR, yielding an intention-to-treat CR rate of 60.5%. Eight patients excluded from the trial because of absence of CR were treated with rituximab combined with chemotherapy, and six (75%) achieved CR. Event-free survival was 42% and overall survival was 47% at 27.5 months. Fourteen patients died, ten of progression of their post-transplant lymphoproliferative disorder. INTERPRETATION AND CONCLUSIONS These results confirm that extended treatment with rituximab can obtain a high rate of CR in patients with post-transplant lymphoproliferative disorders after solid organ transplantation without increasing toxicity, and should be recommended as initial therapy for these patients.
Resumo:
The present study was conducted to explore whether single nucleotide polymorphisms (SNPs) in Th1 and Th17 cell-mediated immune response genes differentially influence the risk of rheumatoid arthritis (RA) in women and men. In phase one, 27 functional/tagging polymorphisms in C-type lectins and MCP-1/CCR2 axis were genotyped in 458 RA patients and 512 controls. Carriers of Dectin-2 rs4264222T allele had an increased risk of RA (OR = 1.47, 95%CI 1.10-1.96) whereas patients harboring the DC-SIGN rs4804803G, MCP-1 rs1024611G, MCP-1 rs13900T and MCP-1 rs4586C alleles had a decreased risk of developing the disease (OR = 0.66, 95%CI 0.49-0.88; OR = 0.66, 95%CI 0.50-0.89; OR = 0.73, 95%CI 0.55-0.97 and OR = 0.68, 95%CI 0.51-0.91). Interestingly, significant gender-specific differences were observed for Dectin-2 rs4264222 and Dectin-2 rs7134303: women carrying the Dectin-2 rs4264222T and Dectin-2 rs7134303G alleles had an increased risk of RA (OR = 1.93, 95%CI 1.34-2.79 and OR = 1.90, 95%CI 1.29-2.80). Also five other SNPs showed significant associations only with one gender: women carrying the MCP-1 rs1024611G, MCP-1 rs13900T and MCP-1 rs4586C alleles had a decreased risk of RA (OR = 0.61, 95%CI 0.43-0.87; OR = 0.67, 95%CI 0.47-0.95 and OR = 0.60, 95%CI 0.42-0.86). In men, carriers of the DC-SIGN rs2287886A allele had an increased risk of RA (OR = 1.70, 95%CI 1.03-2.78), whereas carriers of the DC-SIGN rs4804803G had a decreased risk of developing the disease (OR = 0.53, 95%CI 0.32-0.89). In phase 2, we genotyped these SNPs in 754 RA patients and 519 controls, leading to consistent gender-specific associations for Dectin-2 rs4264222, MCP-1 rs1024611, MCP-1 rs13900 and DC-SIGN rs4804803 polymorphisms in the pooled sample (OR = 1.38, 95%CI 1.08-1.77; OR = 0.74, 95%CI 0.58-0.94; OR = 0.76, 95%CI 0.59-0.97 and OR = 0.56, 95%CI 0.34-0.93). SNP-SNP interaction analysis of significant SNPs also showed a significant two-locus interaction model in women that was not seen in men. This model consisted of Dectin-2 rs4264222 and Dectin-2 rs7134303 SNPs and suggested a synergistic effect between the variants. These findings suggest that Dectin-2, MCP-1 and DC-SIGN polymorphisms may, at least in part, account for gender-associated differences in susceptibility to RA.
Resumo:
Novel biomarkers are required to improve prognostic predictions obtained with lung cancer staging systems. This study of 62 surgically-treated Non-Small Cell Lung Cancer (NSCLC) patients had two objectives: i) to compare the predictive value of T-stage classifications between the 6(th) and 7(th) editions of the Tumor, Node, and Metastasis staging system (TNM); and ii) to examine the association of Pkp1 and/or Krt15 gene expression with survival and outcomes. Multivariate and Kaplan-Meier survival analyses were performed, examining the relationship of survival with T-stage, recurrence, and TNM-stage (by each TNM edition) and with the single/combined expression of Pkp1 and/or Krt15 genes. Five-year survival rates only significantly differed as a function of T-stage in patients without recurrence when estimated using the 6(th) edition of the TNM classification and only in patients in pathologic TNM-stage IA using the 7(th). Overall survival for patients with elevated expression of both genes was 13.5 months in those with adenocarcinoma and 34.6 months in those with squamous cell carcinoma. Overall survival was 30.4 months in patients with Pkp1 gene upregulation and 30.9 months in those with Krt15 gene upregulation. In conclusion, survival estimations as a function of T-staging differed between the 6(th) and 7(th) editions of TNM. Overall survival differed according to the expression of Pkp1 and/or Krt15 genes, although this relationship did not reach statistical significance.
Resumo:
In Europe, the combination of plerixafor + granulocyte colony-stimulating factor is approved for the mobilization of hematopoietic stem cells for autologous transplantation in patients with lymphoma and myeloma whose cells mobilize poorly. The purpose of this study was to further assess the safety and efficacy of plerixafor + granulocyte colony-stimulating factor for front-line mobilization in European patients with lymphoma or myeloma. In this multicenter, open label, single-arm study, patients received granulocyte colony-stimulating factor (10 μg/kg/day) subcutaneously for 4 days; on the evening of day 4 they were given plerixafor (0.24 mg/kg) subcutaneously. Patients underwent apheresis on day 5 after a morning dose of granulocyte colony-stimulating factor. The primary study objective was to confirm the safety of mobilization with plerixafor. Secondary objectives included assessment of efficacy (apheresis yield, time to engraftment). The combination of plerixafor + granulocyte colony-stimulating factor was used to mobilize hematopoietic stem cells in 118 patients (90 with myeloma, 25 with non-Hodgkin's lymphoma, 3 with Hodgkin's disease). Treatment-emergent plerixafor-related adverse events were reported in 24 patients. Most adverse events occurred within 1 hour after injection, were grade 1 or 2 in severity and included gastrointestinal disorders or injection-site reactions. The minimum cell yield (≥ 2 × 10(6) CD34(+) cells/kg) was harvested in 98% of patients with myeloma and in 80% of those with non-Hodgkin's lymphoma in a median of one apheresis. The optimum cell dose (≥ 5 × 10(6) CD34(+) cells/kg for non-Hodgkin's lymphoma or ≥ 6 × 10(6) CD34(+) cells/kg for myeloma) was harvested in 89% of myeloma patients and 48% of non-Hodgkin's lymphoma patients. In this prospective, multicenter European study, mobilization with plerixafor + granulocyte colony-stimulating factor allowed the majority of patients with myeloma or non-Hodgkin's lymphoma to undergo transplantation with minimal toxicity, providing further data supporting the safety and efficacy of plerixafor + granulocyte colony-stimulating factor for front-line mobilization of hematopoietic stem cells in patients with non-Hodgkin's lymphoma or myeloma.
Resumo:
Fungal diseases still play a major role in morbidity and mortality in patients with haematological malignancies, including those undergoing haematopoietic stem cell transplantation. Although Aspergillus and other filamentous fungal diseases remain a major concern, Candida infections are still a major cause of mortality. This part of the ESCMID guidelines focuses on this patient population and reviews pertaining to prophylaxis, empirical/pre-emptive and targeted therapy of Candida diseases. Anti-Candida prophylaxis is only recommended for patients receiving allogeneic stem cell transplantation. The authors recognize that the recommendations would have most likely been different if the purpose would have been prevention of all fungal infections (e.g. aspergillosis). In targeted treatment of candidaemia, recommendations for treatment are available for all echinocandins, that is anidulafungin (AI), caspofungin (AI) and micafungin (AI), although a warning for resistance is expressed. Liposomal amphotericin B received a BI recommendation due to higher number of reported adverse events in the trials. Amphotericin B deoxycholate should not be used (DII); and fluconazole was rated CI because of a change in epidemiology in some areas in Europe. Removal of central venous catheters is recommended during candidaemia but if catheter retention is a clinical necessity, treatment with an echinocandin is an option (CII(t) ). In chronic disseminated candidiasis therapy, recommendations are liposomal amphotericin B for 8 weeks (AIII), fluconazole for >3 months or other azoles (BIII). Granulocyte transfusions are only an option in desperate cases of patients with Candida disease and neutropenia (CIII).
Resumo:
Thymic T cell lineage commitment is dependent on Notch1 (N1) receptor-mediated signaling. Although the physiological ligands that interact with N1 expressed on thymic precursors are currently unknown, in vitro culture systems point to Delta-like 1 (DL1) and DL4 as prime candidates. Using DL1- and DL4-lacZ reporter knock-in mice and novel monoclonal antibodies to DL1 and DL4, we show that DL4 is expressed on thymic epithelial cells (TECs), whereas DL1 is not detected. The function of DL4 was further explored in vivo by generating mice in which DL4 could be specifically inactivated in TECs or in hematopoietic progenitors. Although loss of DL4 in hematopoietic progenitors did not perturb thymus development, inactivation of DL4 in TECs led to a complete block in T cell development coupled with the ectopic appearance of immature B cells in the thymus. These immature B cells were phenotypically indistinguishable from those developing in the thymus of conditional N1 mutant mice. Collectively, our results demonstrate that DL4 is the essential and nonredundant N1 ligand responsible for T cell lineage commitment. Moreover, they strongly suggest that N1-expressing thymic progenitors interact with DL4-expressing TECs to suppress B lineage potential and to induce the first steps of intrathymic T cell development.
Resumo:
Research in vitro facilitates discovery, screening, and pilot experiments, often preceding research in vivo. Several technical difficulties render Dendritic Cell (DC) research particularly challenging, including the low frequency of DC in vivo, thorough isolation requirements, and the vulnerability of DC ex vivo. Critically, there is not as yet a widely accepted human or murine DC line and in vitro systems of DC research are limited. In this study, we report the generation of new murine DC lines, named MutuDC, originating from cultures of splenic CD8α conventional DC (cDC) tumors. By direct comparison to normal WT splenic cDC subsets, we describe the phenotypic and functional features of the MutuDC lines and show that they have retained all the major features of their natural counterpart in vivo, the splenic CD8α cDC. These features include expression of surface markers Clec9A, DEC205, and CD24, positive response to TLR3 and TLR9 but not TLR7 stimuli, secretion of cytokines, and chemokines upon activation, as well as cross-presentation capacity. In addition to the close resemblance to normal splenic CD8α cDC, a major advantage is the ease of derivation and maintenance of the MutuDC lines, using standard culture medium and conditions, importantly without adding supplementary growth factors or maturation-inducing stimuli to the medium. Furthermore, genetically modified MutuDC lines have been successfully obtained either by lentiviral transduction or by culture of DC tumors originating from genetically modified mice. In view of the current lack of stable and functional DC lines, these novel murine DC lines have the potential to serve as an important auxiliary tool for DC research.
Resumo:
Circadian cycles and cell cycles are two fundamental periodic processes with a period in the range of 1 day. Consequently, coupling between such cycles can lead to synchronization. Here, we estimated the mutual interactions between the two oscillators by time-lapse imaging of single mammalian NIH3T3 fibroblasts during several days. The analysis of thousands of circadian cycles in dividing cells clearly indicated that both oscillators tick in a 1:1 mode-locked state, with cell divisions occurring tightly 5 h before the peak in circadian Rev-Erbα-YFP reporter expression. In principle, such synchrony may be caused by either unidirectional or bidirectional coupling. While gating of cell division by the circadian cycle has been most studied, our data combined with stochastic modeling unambiguously show that the reverse coupling is predominant in NIH3T3 cells. Moreover, temperature, genetic, and pharmacological perturbations showed that the two interacting cellular oscillators adopt a synchronized state that is highly robust over a wide range of parameters. These findings have implications for circadian function in proliferative tissues, including epidermis, immune cells, and cancer.
Resumo:
In the context of Systems Biology, computer simulations of gene regulatory networks provide a powerful tool to validate hypotheses and to explore possible system behaviors. Nevertheless, modeling a system poses some challenges of its own: especially the step of model calibration is often difficult due to insufficient data. For example when considering developmental systems, mostly qualitative data describing the developmental trajectory is available while common calibration techniques rely on high-resolution quantitative data. Focusing on the calibration of differential equation models for developmental systems, this study investigates different approaches to utilize the available data to overcome these difficulties. More specifically, the fact that developmental processes are hierarchically organized is exploited to increase convergence rates of the calibration process as well as to save computation time. Using a gene regulatory network model for stem cell homeostasis in Arabidopsis thaliana the performance of the different investigated approaches is evaluated, documenting considerable gains provided by the proposed hierarchical approach.
Resumo:
Modern dietary habits are characterized by high-sodium and low-potassium intakes, each of which was correlated with a higher risk for hypertension. In this study, we examined whether long-term variations in the intake of sodium and potassium induce lasting changes in the plasma concentration of circulating steroids by developing a mathematical model of steroidogenesis in mice. One finding of this model was that mice increase their plasma progesterone levels specifically in response to potassium depletion. This prediction was confirmed by measurements in both male mice and men. Further investigation showed that progesterone regulates renal potassium handling both in males and females under potassium restriction, independent of its role in reproduction. The increase in progesterone production by male mice was time dependent and correlated with decreased urinary potassium content. The progesterone-dependent ability to efficiently retain potassium was because of an RU486 (a progesterone receptor antagonist)-sensitive stimulation of the colonic hydrogen, potassium-ATPase (known as the non-gastric or hydrogen, potassium-ATPase type 2) in the kidney. Thus, in males, a specific progesterone concentration profile induced by chronic potassium restriction regulates potassium balance.
Resumo:
BACKGROUND: The storage of blood induces the formation of erythrocytes-derived microparticles. Their pathogenic role in blood transfusion is not known so far, especially the risk to trigger alloantibody production in the recipient. This work aims to study the expression of clinically significant blood group antigens on the surface of red blood cells microparticles. MATERIAL AND METHODS: Red blood cells contained in erythrocyte concentrates were stained with specific antibodies directed against blood group antigens and routinely used in immunohematology practice. After inducing erythrocytes vesiculation with calcium ionophore, the presence of blood group antigens was analysed by flow cytometry. RESULTS: The expression of several blood group antigens from the RH, KEL, JK, FY, MNS, LE and LU systems was detected on erythrocyte microparticles. The presence of M (MNS1), N (MNS2) and s (MNS4) antigens could not be demonstrated by flow cytometry, despite that glycophorin A and B were identified on microparticles using anti-CD235a and anti-MNS3. DISCUSSION: We conclude that blood group antigens are localized on erythrocytes-derived microparticles and probably keep their immunogenicity because of their capacity to bind specific antibody. Selective segregation process during vesiculation or their ability to elicit an immune response in vivo has to be tested by further studies.
Resumo:
The history of most cutaneous squamous cell carcinomas (CSCC) is limited to the skin. However, about 4% of these malignancies are at risk of metastasis and can be life-threatening. This risk is determined by clinical and histological elements which are individually recognized, but so far staging systems allow us neither to assess a risk score, nor to adopt a standardized therapeutical approach. This article reviews prognostic factors for CSCC, and underlines the need for the clinician to have all clinical and histological elements available, in order to try to define the best therapeutical strategy for each case, following up-to-date recommendations.
Resumo:
The cDNA encoding the NH2-terminal 589 amino acids of the extracellular domain of the human polymeric immunoglobulin receptor was inserted into transfer vectors to generate recombinant baculo- and vaccinia viruses. Following infection of insect and mammalian cells, respectively, the resulting truncated protein corresponding to human secretory component (hSC) was secreted with high efficiency into serum-free culture medium. The Sf9 insect cell/baculovirus system yielded as much as 50 mg of hSC/liter of culture, while the mammalian cells/vaccinia virus system produced up to 10 mg of protein/liter. The M(r) of recombinant hSC varied depending on the cell line in which it was expressed (70,000 in Sf9 cells and 85-95,000 in CV-1, TK- 143B and HeLa). These variations in M(r) resulted from different glycosylation patterns, as evidenced by endoglycosidase digestion. Efficient single-step purification of the recombinant protein was achieved either by concanavalin A affinity chromatography or by Ni(2+)-chelate affinity chromatography, when a 6xHis tag was engineered to the carboxyl terminus of hSC. Recombinant hSC retained the capacity to specifically reassociate with dimeric IgA purified from hybridoma cells.
Resumo:
Background: To enhance our understanding of complex biological systems like diseases we need to put all of the available data into context and use this to detect relations, pattern and rules which allow predictive hypotheses to be defined. Life science has become a data rich science with information about the behaviour of millions of entities like genes, chemical compounds, diseases, cell types and organs, which are organised in many different databases and/or spread throughout the literature. Existing knowledge such as genotype - phenotype relations or signal transduction pathways must be semantically integrated and dynamically organised into structured networks that are connected with clinical and experimental data. Different approaches to this challenge exist but so far none has proven entirely satisfactory. Results: To address this challenge we previously developed a generic knowledge management framework, BioXM™, which allows the dynamic, graphic generation of domain specific knowledge representation models based on specific objects and their relations supporting annotations and ontologies. Here we demonstrate the utility of BioXM for knowledge management in systems biology as part of the EU FP6 BioBridge project on translational approaches to chronic diseases. From clinical and experimental data, text-mining results and public databases we generate a chronic obstructive pulmonary disease (COPD) knowledge base and demonstrate its use by mining specific molecular networks together with integrated clinical and experimental data. Conclusions: We generate the first semantically integrated COPD specific public knowledge base and find that for the integration of clinical and experimental data with pre-existing knowledge the configuration based set-up enabled by BioXM reduced implementation time and effort for the knowledge base compared to similar systems implemented as classical software development projects. The knowledgebase enables the retrieval of sub-networks including protein-protein interaction, pathway, gene - disease and gene - compound data which are used for subsequent data analysis, modelling and simulation. Pre-structured queries and reports enhance usability; establishing their use in everyday clinical settings requires further simplification with a browser based interface which is currently under development.
Resumo:
It is well established that T cell-deficient nude and SCID mice can be reconstituted by i.v. injection of small numbers of purified peripheral CD4+ T cells; however, the requirements for expansion of the transferred T cells in such systems are not clear. We show here that blood and lymphoid organs of MHC class II-deficient mice (which selectively lack mature CD4+ T cells) cannot be reconstituted by transfer of purified splenic CD4+ T cells, whereas TCRalpha-deficient mice (which lack both CD4+ and CD8+ mature T cells) are readily reconstituted. The failure of CD4+ T cell reconstitution in MHC class II-deficient mice was not due to the presence of CD8+ T cells, since similar results were obtained in TCRalpha-MHC class II double-deficient mice. Consistent with most previous studies CD4+ T cells in reconstituted TCRalpha-deficient mice had a diverse TCR Vbeta repertoire and were predominantly of an activated/memory (CD44high) phenotype. Collectively our data demonstrate that the expansion of peripheral CD4+ T cells in a T cell-deficient host is dependent upon interactions of the TCR with MHC class II.