959 resultados para Carbon oxidation
Resumo:
This report describes the preparation of Pt-nanoparticle-coated gold-nanoporous film (PGNF) on a gold substrate via a simple "green" approach. The gold electrode that has been anodized under a high potential of 5 V is reduced by freshly prepared ascorbic acid (AA) solution to obtain gold nanoporous film electrode. Then the Pt nanoparticle is grown on the electrode by cyclic voltammetry (CV).
Resumo:
Palladium nanoparticle-loaded carbon nanofibers (Pd/CNFs) were prepared by electrospinning and subsequent thermal treatment processes. Pd/CNFs modified carbon paste electrode (Pd/CNF-CPE) displayed excellent electrochemical catalytic activities towards dopamine (DA), uric acid (UA) and ascorbic acid (AA). The oxidation overpotentials of DA, UA and AA were decreased significantly compared with those obtained at the bare CPE. Differential pulse voltammetry was used for the simultaneous determination of DA, UA and AA in their ternary mixture.
Resumo:
Highly sensitive amperometric detection of dihydronicotinamide adenine dinucleotide (NADH) by using novel synthesized carbon nanofibers (CNFs) without addition of any mediator has been proposed. The CNFs were prepared by combination of electrospinning technique with thermal treatment method and were applied without any oxidation pretreatment to construct the electrochemical sensor. In amperometric detection of NADH, a linear range up to 11.45 mu M with a low detection limit of 20 nM was obtained with the CNF-modified carbon paste electrode (CNF-CPE).
Resumo:
The biosensing application of single-walled carbon nanohorns (SWCNHs) was demonstrated through fabrication of an amperometric glucose biosensor. The biosensor was constructed by encapsulating glucose oxidase in the Nafion-SWCNHs composite film. The cyclic voltammograms for glucose oxidase immobilized on the composite film displayed a pair of well-defined and nearly symmetric redox peaks with a formal potential of -0.453V. The biosensor had good electrocatalytic activity toward oxidation of glucose.
Resumo:
A carbon-supported palladium catalyst modified by non-metal phosphorus(PdP/C) has been developed as an oxygen reduction catalyst for direct methanol fuel cells.The PdP/C catalyst was prepared by the sodium hypophosphite reduction method. The as-prepared Pd nanoparticles have a narrow size distribution with an average diameter of 2 nm. Energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) results indicate that P enters into the crystal lattice of Pd and forms an alloy.
Resumo:
Multiwalled carbon nanotube (MWCNT)/ionic liquid/gold nanoparticle hybrid materials have been prepared by a chemical route that involves functionalization of MWCNT with amine-terminated ionic liquids followed by deposition of Au. Transmission electron microscopy revealed well-distributed Au with a narrow size distribution centered around 3.3 nm. The identity of the hybrid material was confirmed through Raman and X-ray photoelectron spectroscopy.
Resumo:
Hydrogenation of alpha,beta-unsaturated aldehydes (citral, 3-methyl-2-butenal, cinnamaldehyde) has been studied with tetrakis(triphenylphosphine) ruthenium dihydride (H2Ru(TPP)(4)) catalyst in a poly(ethylene glycol) (PEG)/ compressed carbon dioxide biphasic system. The hydrogenation reaction was slow under PEG/ H-2 biphasic conditions at H-2 4 MPa in the absence of CO2. When the reaction mixture was pressurized by a non-reactant of CO2, however, the reaction was significantly accelerated.
Resumo:
Single-walled carbon nanohorn modified glassy carbon electrode (SWCNH-modified GCE) was first employed for the simultaneous determination of uric acid (UA), dopamine (DA), and ascorbic acid (AA). The SWCNH-modified GCE displayed excellent electrochemical catalytic activities. The oxidation overpotentials of UA, DA, and AA decrease significantly and their oxidation peak currents increase dramatically at SWCNH-modified GCE. Linear sweep voltammetry (LSV) was used for the simultaneous determination of UA, DA, and AA in their ternary mixture. The peak separations between UA and DA, and DA and AA are large up to 152 mV and 221 mV, respectively.
Resumo:
We firstly reported a novel polymer matrix fabricated by type I collagen and polymers, and this matrix can be used as nanoreactors for electrodepositing platinum nanoclusters (PNCs). The type I collagen film has a significant effect on the growth of PNCs. The size of the platinum nanoparticles could be readily tuned by adjusting deposition time, potential and the concentration of electrolyte, which have been verified by field-emitted scanning electron microscopy (FE-SEM). Furthermore, cyclic voltammetry (CV) has demonstrated that the as-prepared PNCs can catalyze methanol directly with higher activity than that prepared on PSS/PDDA film, and with better tolerance to poisoning than the commercial E-TEK catalyst. The collagen-polymer matrix can be used as a general reactor to electrodeposit other metal nanostructures.
Resumo:
A novel nonenzymatic glucose sensor was developed based on the renewable Ni nanoparticle-loaded carbon nanofiber paste (NiCFP) electrode. The NiCF nanocomposite was prepared by combination of electrospinning technique with thermal treatment method. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that large amounts of spherical nanoparticles were well dispersed on the surface or embedded in the carbon nanofibers. And the nanoparticles were composed of Ni and NiO, as revealed by energy dispersive X-ray spectroscopy (EDX) and X-ray powder diffraction (XRD). In application to nonenzymatic glucose determination, the renewable NiCFP electrodes, which were constructed by simply mixing the electrospun nanocomposite with mineral oil, exhibited strong and fast amperometric response without being poisoned by chloride ions. Low detection limit of 1 mu M with wide linear range from 2 mu M to 2.5 mM (R = 0.9997) could be obtained.
Electrochemical Detection of Hydrazine Based on Electrospun Palladium Nanoparticle/Carbon Nanofibers
Resumo:
In this work, we developed an electrochemical method for the detection of hydrazine based oil palladium nanoparticle/carbon nanofibers (Pd/CNFs). Pd/CNFs were prepared by electrospinning technique and subsequent thermal treatments. The electrocatalytic behaviors of Pd/CNFs modified glassy carbon electrode (Pd/CNF-GCE) for hydrazine oxidation were evaluated by cyclic voltammetry (CV), an obvious and well-defined oxidation peak appeared at -0.32 V (vs. Ag/AgCl). The mechanism of the oxidation of hydrazine at Pd/CNF-GCE was also studied, which demonstrated an irreversible diffusion-controlled electrode process and a four-electron transfer involved in the overall reaction. Furthermore, the wide linear range, low detection limit, good reproducibility and excellent storage stability were obtained utilizing differential pulse voltammetry (DPV).
Resumo:
A modified impregnation method was used to prepare highly dispersive carbon-supported PtRu catalyst (PtRu/C). Two modifications to the conventional impregnation method were performed: one was to precipitate the precursors ((NH4)(2)PtCl6 and Ru(OH)(3)) on the carbon support before metal reduction: the other was to add a buffer into the synthetic solution to stabilize the pH. The prepared catalyst showed a much higher activity for methanol electro-oxidation than a catalyst prepared by the conventional impregnation method. even higher than that of current commercially available, state-of-the-art catalysts. The morphology of the prepared catalyst was characterized using TEM and XRD measurements to determine particle sizes, alloying degree, and lattice parameters. Electrochemical methods were also used to ascertain the electrochemical active surface area and the specific activity of the catalyst.
Resumo:
PdSn/C catalysts with different atomic ratios of Pd to Sn were synthesised by a NaBH4 reduction method. Electrochemical tests show that the alloy catalysts exhibit significantly higher catalytic activity and stability for formic acid electrooxidation (FAEO) than the Pd/C catalyst prepared with the same method. XRD and TEM indicate that a particle-size effect is not the main cause for the high performance. XPS confirms that Pd is modified by Sn through an electronic effect which can decrease the adsorption strength of poisonous intermediates on Pd and thus promote the FAEO greatly.
Resumo:
A simple and rapid method for morphine detection has been described based on electrochemical pretreatment of glassy carbon electrode (GCE) which was treated by anodic oxidation at 1.75 V, following potential cycling in the potential range from 0 V to 1.0 V vs. Ag vertical bar AgCl reference electrode. The sensitivity for morphine detection was improved greatly and the detection limit was 0.2 mu M. The reproducibility of the voltammetric measurements was usually less than 3% RSD for six replicate measurements. Moreover, this method could readily discriminate morphine from codeine. And an electrochemical detection of morphine in spiked urine sample was succeeded with satisfactory results.
Resumo:
Preparation of monodispersed platinum nanoparticles with average size 2.0 nm stabilized by amino-terminated ionic liquid was demonstrated. The resulting platinum nanoparticles (Pt-IL) retained long-term stability without special protection. The Pt-IL nanoparticles exhibited high electrocatalytic activity toward reduction of oxygen and oxidation of methanol. Rotating disk electrode voltammetry and rotating ring-disk electrode voltammetry confirmed that the Pt-IL films could catalyze an almost four-electron reduction of dioxygen to water.