1000 resultados para Carbia, Rómulo D.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The H1',H2' and H2″ regions of the 270-MHz PMR spectra of two deoxydinucleotides, d-pTpA and d-pApT, have been analyzed. The coupling constants in the sugar ring indicate that both A and T sugars have a tendency to acquire 2E conformations. There is also a marginal difference in the 2E populations of the T sugar in the two dinucleotides. The trends in the chemical shifts of base protons indicate different stacking of the bases in d-pApT and d-pTpA. The sequence effects on base stacking and pentose conformation are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma polymerization was used to coat a melt electrospun polycaprolactone scaffold to improve cell attachment and organization. Plasma polymerization was performed using an amine containing monomer, allylamine, which then allowed for the subsequent immobilization of biomolecules i.e. heparin and fibroblast growth factor-2. The stability of the plasma polymerized amine-coating was demonstrated by X-ray photoelectron spectroscopy analysis and imaging time-of-flight secondary ion mass spectrometry revealed that a uniform plasma amine-coating was deposited throughout the scaffold. Based upon comparison with controls it was evident that the combination scaffold aided cell ingress and the formation of distinct fibroblast and keratinocyte layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital image

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital image

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple generalized technique for realizing a non-linear digital to analogue converter (N-DAC), based on the principles of ' segment of equal digital interval ' is described. The simplicity of the proposed technique is demonstrated by realizing an N-DAC having a square law transfer function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman and infrared spectra of hydrazine carbothioamide (HCTA) and its three 15N-labelled molecules (H2N NH CS15NH2, H2 15N15NHCSNH2 and H2 15N15NHCS15NH2) and their deuterated compounds have been obtained. A complete normal coordinate analysis of HCTA has been made and revised assignments are presented. The factor group splittings of HCTA have been interpreted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L&in-induced agglutination is a complex process determined by several factprs such as the nature of lectin (valency, binding constant) the properties of cell membrane (fluidity, distribution of lectin receptor sites) and the metabolic state of the cell (microvilli, microtubules, microfilament) [l-3].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed investigation of the d.c. polarographic behaviour of vanadium(V),-(IV) and -(III) in glycine solutions has been made keeping the total glycine concentration at 0.1, 0.5 and 1.0 M and varying the pH of the solution. Experiments keeping the pH constant (using different ratios of glycine and glycine anion) and varying the glycine anion concentration, and also in predominantly anion solutions, have been made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polypeptides with alternating L- and D-amino acid residues can take up stereochemically satisfactory coaxial double-helical structures, both antiparallel and parallel, which are stabilized by systematic interchain NH O hydrogen bonds. Semiempirical energy calculations over allowed regions of conformational space have yielded the characteristics of these double-helices. There are four possible types of antiparallel double-helices - A3, A4, A5 and A6, with n, the number of LD peptide units per turn, around 2.8, 3.6, 4.5 and 5.5 respectively, while for the parallel double-helices there are two types, P3 and P4, having similar helical parameters as in A3 and A4. The hydrogen-bonding scheme restricts the pitch in all the models to the narrow range of 10.0 to 11.5 Å. All these helices have large central cores whose radii increase proportionately with n. In this respect, A3 and A4 are suitable models for the structure of gramicidin A. In terms of their relative energies, antiparallel double-helices are marginally more stable than those with parallel strands. Our results indicate that the energy differences amongst the members in the antiparallel family are not significant and thus provide an explanation for the polymorphism reported for poly(γ-benzyl-LD-glutamate).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ultimate goal of this study has been to construct metabolically engineered microbial strains capable of fermenting glucose into pentitols D-arabitol and, especially, xylitol. The path that was chosen to achieve this goal required discovery, isolation and sequencing of at least two pentitol phosphate dehydrogenases of different specificity, followed by cloning and expression of their genes and characterization of recombinant arabitol and xylitol phosphate dehydrogenases. An enzyme of a previously unknown specificity, D-arabitol phosphate dehydrogenase (APDH), was discovered in Enterococcus avium. The enzyme was purified to homogenity from E. avium strain ATCC 33665. SDS/PAGE revealed that the enzyme has a molecular mass of 41 ± 2 kDa, whereas a molecular mass of 160 ± 5 kDa was observed under non-denaturing conditions implying that the APDH may exist as a tetramer with identical subunits. Purified APDH was found to have narrow substrate specificity, converting only D-arabitol 1-phosphate and D-arabitol 5-phosphate into D-xylulose 5-phosphate and D-ribulose 5-phosphate, respectively, in the oxidative reaction. Both NAD+ and NADP+ were accepted as co-factors. Based on the partial protein sequences, the gene encoding APDH was cloned. Homology comparisons place APDH within the medium chain dehydrogenase family. Unlike most members of this family, APDH requires Mn2+ but no Zn2+ for enzymatic activity. The DNA sequence surrounding the gene suggests that it belongs to an operon that also contains several components of phosphotransferase system (PTS). The apparent role of the enzyme is to participate in arabitol catabolism via the arabitol phosphate route similar to the ribitol and xylitol catabolic routes described previously. Xylitol phosphate dehydrogenase (XPDH) was isolated from Lactobacillus rhamnosus strain ATCC 15820. The enzyme was partially sequenced. Amino acid sequences were used to isolate the gene encoding the enzyme. The homology comparisons of the deduced amino acid sequence of L. rhamnosus XPDH revealed several similar enzymes in genomes of various species of Gram-positive bacteria. Two enzymes of Clostridium difficile and an enzyme of Bacillus halodurans were cloned and their substrate specificities together with the substrate specificity of L. rhamnosus XPDH were compared. It was found that one of the XPDH enzymes of C. difficile and the XPDH of L. rhamnosus had the highest selectivity towards D-xylulose 5-phosphate. A known transketolase-deficient and D-ribose-producing mutant of Bacillus subtilis (ATCC 31094) was further modified by disrupting its rpi (D-ribose phosphate isomerase) gene to create D-ribulose- and D-xylulose-producing strain. Expression of APDH of E. avium and XPDH of L. rhamnosus and C. difficile in D-ribulose- and D-xylulose-producing strain of B. subtilis resulted in strains capable of converting D-glucose into D-arabitol and xylitol, respectively. The D-arabitol yield on D-glucose was 38 % (w/w). Xylitol production was accompanied by co-production of ribitol limiting xylitol yield to 23 %.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammalian heparanase is an endo-β-glucuronidase associated with cell invasion in cancer metastasis, angiogenesis and inflammation. Heparanase cleaves heparan sulfate proteoglycans in the extracellular matrix and basement membrane, releasing heparin/heparan sulfate oligosaccharides of appreciable size. This in turn causes the release of growth factors, which accelerate tumor growth and metastasis. Heparanase has two glycosaminoglycan-binding domains; however, no three-dimensional structure information is available for human heparanase that can provide insights into how the two domains interact to degrade heparin fragments. We have constructed a new homology model of heparanase that takes into account the most recent structural and bioinformatics data available. Heparin analogs and glycosaminoglycan mimetics were computationally docked into the active site with energetically stable ring conformations and their interaction energies were compared. The resulting docked structures were used to propose a model for substrates and conformer selectivity based on the dimensions of the active site. The docking of substrates and inhibitors indicates the existence of a large binding site extending at least two saccharide units beyond the cleavage site (toward the nonreducing end) and at least three saccharides toward the reducing end (toward heparin-binding site 2). The docking of substrates suggests that heparanase recognizes the N-sulfated and O-sulfated glucosamines at subsite +1 and glucuronic acid at the cleavage site, whereas in the absence of 6-O-sulfation in glucosamine, glucuronic acid is docked at subsite +2. These findings will help us to focus on the rational design of heparanase-inhibiting molecules for anticancer drug development by targeting the two heparin/heparan sulfate recognition domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple and convenient methods for introducing deuterium label at C-3 and C-6 position of N-acetyl-D-galactosamine and D-galactose, respectively, are described. For the synthesis of 2-acetamido-2-deoxy-D-3-[2H] galactopyranose, benzyl 2-acetamido-2-deoxy-4,6-O-benzylidene-agr-D-galactopyranoside was oxidized with dimethyl sulfoxide- acetic anhydride and the product was reduced with sodium borodeuteride to introduce the deuterium at C-3. After benzylidene reduction, the mixture was subjected to hydrogenolysis and purified by column chromatography. 1,2:3,4-di-O-isopropylidene-agr-D-galactopyranoside was oxidized followed by reduction with sodium borodeuteride and deprotection to yield D-6-[2H] galactose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conformation of the synthetic cyclic tetrapeptide cyclo(D-Phe-Pro-Sar-Gly) has been determined in solution using the nuclear magnetic resonance technique and in the crystal state by X-ray crystallography. Results showed that the peptide exhibited two different conformations in solution, conformer 1 having cis-trans-cis-trans peptide bonds and conformer 2 having trans-cis-trans-cis peptide bonds. No intramolecular hydrogen bonds were observed in the structures. The X-ray diffraction studies showed the crystals to be orthorhombic with space group P2(1)2(1)2(1) with unit-cell dimensions, a = 5.790, b = 10.344, c = 31.446 A, Z = 4, R = 0.104 for 2301 observed reflections. The crystal structure showed only one type of conformer having cis-trans-cis-trans peptide bonds similar to the conformer 1 in solution.