934 resultados para Capture probability
Resumo:
Optimal Bayesian multi-target filtering is, in general, computationally impractical owing to the high dimensionality of the multi-target state. The Probability Hypothesis Density (PHD) filter propagates the first moment of the multi-target posterior distribution. While this reduces the dimensionality of the problem, the PHD filter still involves intractable integrals in many cases of interest. Several authors have proposed Sequential Monte Carlo (SMC) implementations of the PHD filter. However, these implementations are the equivalent of the Bootstrap Particle Filter, and the latter is well known to be inefficient. Drawing on ideas from the Auxiliary Particle Filter (APF), we present a SMC implementation of the PHD filter which employs auxiliary variables to enhance its efficiency. Numerical examples are presented for two scenarios, including a challenging nonlinear observation model.
Resumo:
An optimal theory on how database analysis to capture the flow structures has been developed in this paper, which include the POD method as its special case. By means of the remainder minimization method in the Sobolev space, for more general optimal conditions the new theory has the potential to overcome an inherent limitation of the POD method, i.e., it cannot be used to the situations in which the optimal condition is other than the inner product global one. As an example, using the new theory, the database of a two-dimensional flow over a backward-facing step is analyzed in detail, with velocity and vorticity bases.