877 resultados para Canonical Correlation Analysis
Resumo:
下载PDF阅读器将番鸭不同就巢群体(就巢1月群、就巢2月群、就巢3月群)、番鸭非就巢群和白改鸭群体作为试验材料,采用PCR-SSCP技术研究番鸭不同就巢群体、番鸭非就巢群和白改鸭5个群体250个个体催乳素(PRL)基因第5外显子多态性及其与就巢性状之间的相关性.结果表明:外显子5片段编码区发现3个SNP位点,位于5 871 bp(G/A)、5 926 bp(A/G)和6 029 bp(C/T)处,其中5 871 bp(G/A)与5 926 bp(A/G)处氨基酸序列均改变,分别为I→V和R→K.统计多态片段的基因型频率和基因频率,并对5个试验鸭群间基因频率作差异进行显著性分析,番鸭非就巢群体与各就巢群体间差异显著(P<0.05),同时番鸭与白改鸭差异极显著(P<0.01).
Resumo:
Host feeding selection by the female pea leafminer, Liriomyza huidobrensis, on 47 species of plants was studied. The leaves were sectioned by microtome, and 15 characteristics of the leaf tissue structure were measured under a microscope. Correlation analysis between host feeding selection and leaf tissue structure indicated that the preference of host feeding selection was positively correlated with the percentage of moisture content of leaves and negatively with thickness of the epidermis wall, and densities of the palisade and spongy tissues of leaves. Leaf tissue structure was influential in feeding and probing behavior of female L. huidobrensis. So, thickness of epidermis wall, densities of the palisade and spongy tissues can act as a physical barrier to female oviposition. Furthermore, higher densities of palisade and spongy tissues can be considered a resistant trait which affects mining of leaf miner larvae as well. As a result, plants with lower leaf moisture content may not be suitable for the development of L. huidobrensis.
Resumo:
Using artificial systems to simulate natural lake environments with cyanobacterial blooms, we investigated plankton community succession by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprinting and morphological method. With this approach, we explored potential ecological effects of a newly developed cyanobacterial blooms removal method using chitosan-modified soils. Results of PCR-DGGE and morphological identification showed that plankton communities in the four test systems were nearly identical at the beginning of the experiment. After applying the newly developed and standard removal methods, there was a shift in community composition, but neither chemical conditions nor plankton succession were significantly affected by the cyanobacteria removal process. The planted Vallisneria natans successfully recovered after cyanobacteria removal, whereas that in the box without removal process did not. Additionally, canonical correspondence analysis indicated that other than for zooplankton abundance, total phosphorus was the most important environmental predictor of planktonic composition. The present study and others suggest that dealing with cyanobacteria removal using chitosan-modified soils can play an important role in controlling cyanobacterial blooms in eutrophicated freshwater systems.
Resumo:
This study consisted of sampling benthic algae at 32 sites in the Gangqu River, an important upstream tributary of the Yangtze River. Our aims were to characterize the benthic algae communities and relationships with environmental variables. Among the 162 taxa observed, Achnanthes linearis and Achnanthes lanceolata var. elliptica were the dominant species (17.10% and 14.30% of the total relative abundance, respectively). Major gradients and principal patterns of variation within the environmental variables were detected by principal component analysis (PCA). Then non-metric multidimensional scaling (NMS) divided all the sites into three groups, which were validated by multi-response permutation procedures (MRPP). Canonical correspondence analysis (CCA) indicated that three environmental variables (TN, TDS, and TP) significantly affected the distribution of benthic algae. Weighted averaging regression and cross-calibration produced strong models for predicting TN and TDS concentration, which enabled selection of algae taxa as potentially sensitive indicators of certain TN and TDS levels: for TN, Achnanthes lanceolata, Achnanthes lanceolata var. elliptica, and Cymbella ventricosa var. semicircularis; for TDS, Cocconeis placentula, Cymbella alpina var. minuta, and Fragilaria virescens. The present study represents an early step in establishing baseline conditions. Further monitoring is suggested to gain a better understanding of this region.
Resumo:
The relationship of macrozoobenthos communities with some environmental variables, and their response to the ongoing restoration measures were studied in a small hypertrophic urban lake near the Yangzte River, China. Twenty taxa including 9 oligochaetes, 7 insects, 2 mollusks and two other animals were found during March 2005 to May 2006. The reappearance of some indigenous macrozoobenthos species showed that the ecological engineering remediation carried out was helpful for the recovery of the macrozoobenthos communities. Through canonical correspondence analysis (CCA), it was detected that temperature (T), conductivity (COND), Secchi depth/deep (SD/Deep), TN, total suspended solids (SS) and chemical oxygen demand (CODcr) were significant environmental factors that influenced the pattern of macrozoobenthos. Limnodrilus hoffmeisteri, Tanypus sp. and Alocinma longicornis could be used as potential bio-indicators in monitoring the development of ecological restoration.
Resumo:
To explore the relationships between community composition and the environment in a reservoir ecosystem, plankton communities from the Three Gorges Reservoir Region were studied by PCR-denaturing gradient gel electrophoresis fingerprinting. Bacterial and eukaryotic operational taxonomic units (OTUs), generated by DGGE analysis of the PCR-amplified 16S and 18S rRNA genes, were used as surrogates for the dominant "biodiversity units". OTU composition among the sites was heterogeneous; 46.7% of the total bacteria] OTUs (45) and 64.1% of the eukaryotic OTUs (39) were identified in less than half of the sampling sites. Unweighted pair group method with arithmetic averages (UPGMA) clustering of the OTUs suggested that the plankton communities in the Xiangxi Rive sites were not always significantly different from those from the Yangtze River sites, despite clear differences in their environmental characterizations. Canonical correspondence analysis (CCA) was applied to further investigate the relationships between OTU composition and the environmental factors. The first two CCA ordination axes suggested that the bacterial community composition was primarily correlated with the variables of NO3--N, dissolved oxygen (DO), and SiO32--Si, whereas, the eukaryotic community was mainly correlated with the concentrations of DO, PO43--P, and SiO32--Si.
Resumo:
The assemblage of oligochaetes in the Liangzi Lake District, located in middle reaches of the Changjiang River, was studied from May to August, 2001. To establish species composition, richness, and abundance and detect the influence of environmental variables on oligochaete distributional patterns, 45 localities were sampled. All total, 20 species belonging to the families Naididae (eight species), Tubificidae (11 species), and Lumbriculidae (one species) were found. Branchiura sowerbyi, Tubifex sp. 1, and Aulodrilus pluriseta were the dominant species and contributed nearly 70% of the total abundance. The 45 sampling sites were separated into three groups based on composition and relative abundance of benthic oligochaete communities using two-way indictor species analysis associated with detrended correspondence analysis. Canonical correspondence analysis indicated that two plant variables (total plant cover and total submersed macrophyte biomass) were strongly correlated with the faunal gradient (p < 0.05). Other predicator variables were water depth and total nitrogen.
Resumo:
The 16S and 18S rRNA genes of planktonic organisms derived from five stations with nutrient gradients in Lake Donghu, China, were studied by PCR-denaturing gradient gel electrophoresis (DGGE) fingerprinting, and the relationships between the genetic diversity of the plankton community and biotic/abiotic factors are discussed. The concentrations of total nitrogen (TN), total phosphorus (TP), NH4-N and As were found to be significantly related (P < 0.05) to morphological composition of the plankton community. Both chemical and morphological analyses suggested that temporal heterogeneity was comparatively higher than spatial heterogeneity in Lake Donghu. Although the morphological composition was not identical to the DGGE fingerprints in characterizing habitat similarity, the two strongest eutrophic stations (I and II) were always initially grouped into one cluster. Canonical correspondence analysis suggested that the factors strongly correlated with the first two ordination axes were seasonally different. The concentrations of TN and TP and the densities of rotifers and crustaceans were generally the main factors related to the DGGE patterns of the plankton communities. The study suggested that genetic diversity as depicted by metagenomic techniques (such as PCR-DGGE fingerprinting) is a promising tool for ecological study of plankton communities and that such techniques are likely to play an increasingly important role in assessing the environmental conditions of aquatic habitats.
Resumo:
Investigations of protozoa were carried out during four surveys of East Dongting Lake, China. A total of 160 protozoan species belonging to 71 genera was identified, of which 53 were flagellates, 37 sarcodines, and 70 ciliates. Among them, Peritrichida (32.6% of frequency), Arcellinida (16.2%), Volvocales (13.61/6), Peridiniales (13.1%), and Chrysomonadales (9.1%) were the main groups and contributed to 84.5% of the overall species. Ciliates were mainly composed of sessile species and small species. The total protozoan abundance varied from 2,400 cells L-1 to 20,250 cells L-1. The highest protozoan abundance occurred in spring; the lowest number was in autumn. The highest abundance of ciliates occurred in spring and winter, whereas flagellates developed the highest abundance in,summer and autumn. Pearson correlation analysis and linear regressions indicated that chlorophyll a and water velocity were the main factors affecting ternporal and spatial variations of the protozoan abundance.
Resumo:
1. We studied driving forces shaping phytoplankton assemblages in two subtropical plateau lakes with contrasting trophic status, the oligotrophic deep Lake Fuxian and the eutrophic shallow Lake Xingyun. 2. Phytoplankton samples were taken monthly for a year and phytoplankton species were sorted into the main taxonomic groups and associations proposed by Reynolds. A canonical correspondence analysis (CCA) was used to test the occurrence of these classification schemes and to determine their discriminatory power. 3. The results suggest that the major driving forces in Lake Fuxian were physical variables, and particularly the underwater light climate, whereas, nutrients were the important driving force in Lake Xingyun. 4. Top-down control through zooplankton grazing in Lake Fuxian was hardly ever a significant determinant itself, because of the scarcity of zooplankton and their low grazing efficiency of predation while a dominance of inedible cyanobacteria throughout the year rendered top-down controls ineffective failing in Lake Xingyun. Hence phytoplankton communities in both lakes appear to be regulated primarily by bottom-up controls.
Resumo:
Hexachlorobenzene (HCB) is a chlorinated aromatic hydrocarbon that was widely used for seed dressing in prevention of fungal growth on crops, and also as a component of fireworks, ammunition, and synthetic rubbers. Because of its resistance to degradation and mobility, HCB is widely distributed throughout the environment and is accumulated through food chains in different ecosystems. In this study, a preliminary investigation was carried out on the bioaccumulation and the toxic effects of HCB in the microbial (protozoan in particular) communities in the Fuhe River, Wuhan, a water body receiving industrial wastewaters containing HCB and other pollutants, using the standardized polyurethane foam units (PFU) method. Field samples were taken from eight stations established along the Fuhe River in January and August 2006. The concentration ratios of HCB in microbial communities and in water were 9.66-18.64, and the microbial communities accumulated 13.29-56.88 mu g/L of HCB in January and 0.82-10.25 mu g/L HCB in August. Correlation analysis showed a negative correlation between the HCB contents in the microbial assemblage, and the number of species and the diversity index of the protozoan communities. This study demonstrated the applicability of the PFU method in monitoring the effects of HCB on the level of microbial communities.
Resumo:
This study describes the current status of the small fish community in Niushan Lake in China, and examines the spatial and seasonal variations of the community in relation to key environmental factors. Based on macrophyte cover conditions, the lake was divided into three major habitat types: (1) Potamogeton maackianus habitat, (2) Potamogeton maackianus and Myriophyllum spicatum habitat, and (3) uncovered or less-covered habitat. Fish were sampled quantitatively in the three habitat types by block nets seasonally from September 2002 to August 2003. A total of 10 469 individuals from 27 fish species were caught, among which 20 species were considered as small fishes. Rhodeus ocellatus, Paracheilognathus imberbis, Pseudorasbora parva, Micropercops swinhonis and Cultrichthys erythropterus were recognized as dominant small fishes according to their abundance and occurrence. It was noted that (1) small fishes predominated the total number of fish species in the lake, which reflected to some degree the size diminution phenomenon of fish resources; (2) many small fishes had plant detritus as their food item, which was consistent with the abundance of macrophyte detritus in the lake and implied the importance of detritus in supporting small fish secondary production. Canonical correspondence analysis suggested that the spatial distributions of most small fishes were associated with complex macrophyte cover conditions. Macrophyte biomass was positively correlated with species richness, diversity index and the catch per unit of effort (CPUE) of the fish community. Water depth had no significant effects on species diversity and distribution of the small fishes. Correspondence analysis revealed a higher occurrence of the small fishes and higher abundance of individuals in summer and autumn. Seasonal length-frequency distributions of several species indicated that more larval and juvenile individuals appeared in spring and summer. This study provides some baseline information which will be essential to long-term monitoring of small fish communities in the Yangtze lakes.
Resumo:
The purpose of the research is to study the seasonal succession of protozoa community and the effect of water quality on the protozoa community to characterize biochemical processes occurring at a eutrophic Lake Donghu, a large shallow lake in Wuhan City, China. Samples of protozoa communities were obtained monthly at three stations by PFU (polyurethane foam unit) method over a year. Synchronously, water samples also were taken from the stations for the water chemical quality analysis. Six major variables were examined in a principal component analysis (PCA), which indicate the fast changes of water quality in this station I and less within-year variation and a comparatively stable water quality in stations II and III. The community data were analyzed using multivariate techniques, and we show that clusters are rather mixed and poorly separated, suggesting that the community structure is changing gradually, giving a slight merging of clusters form the summer to the autumn and the autumn to the winter. Canonical correspondence analysis (CCA) was used to infer the relationship between water quality variables and phytoplankton community structure, which changed substantially over the survey period. From the analysis of cluster and CCA, coupled by community pollution value (CPV), it is concluded that the key factors driving the change in protozoa community composition in Lake Donghu was water qualities rather than seasons. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Successions of lake ecosystems from clear-water, macrophyte-rich conditions into turbid states with abundant phytoplankton have taken place in many shallow lakes in China. However, little is know about the change of carbon fluxes in lakes during such processes. We conducted a case study in Lake Biandantang to investigate the change of carbon fluxes during such a regime shift. Dissolved aquatic carbon and gaseous carbon (methane (CH4) and carbon dioxide (CO2)) across air-water interface in three sites with different vegetation covers and compositions were studied and compared. CH4 emissions from three sites were 0.62 +/- 0.36, 0.70 +/- 0.36, and 1.31 +/- 0.57 mg m(-2) h(-1), respectively. Correlation analysis showed that macrophytes, rather than phytoplankton, directly positively affected CH4 emission. CO2 fluxes of three sites in Lake Biandantang were significantly different, and the average values were 77.8 +/- 20.4, 52.2 +/- 14.1 and 3.6 +/- 26.8 mg m(-2) h(-1), respectively. There were an evident trend that the larger macrophyte biomass, the lower CO2 emissions. Correlation analysis showed that in different sites, dominant plant controlled CO2 flux across air-water interface. In a year cycle, the percents of gaseous carbon release from lake accounting for net primary production were significantly different (from 39.3% to 2.8%), indicating that with the decline of macrophytes and regime shift, the lake will be a larger carbon source to the atmosphere. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Numerous environmental pollutants have been detected for estrogenic activity by interacting with the estrogen receptor, but little information is available about their interactions with the progesterone receptor. In this study, emission samples generated by fossil fuel combustion (FFC) and air particulate material (APM) collected from an urban location near a traffic line in a big city of China were evaluated to interact with the human progesterone receptor (hPR) signaling pathway by examining their ability to interact with the activity of hPR expressed in yeast. The results showed that the soot of a petroleum-fired vehicle possessed the most potent anti-progesteronic activity, that of coal-fired stove and diesel fired agrimotor emissions took the second place, and soot samples of coal-fired heating work and electric power station had lesser progesterone inhibition activity. The anti-progesteronic activity of APM was between that of soot from petroleum-fired vehicle and soot from coal-fired establishments and diesel fired agrimotor. Since there was no other large pollution source near the APM sampling sites, the endocrine disrupters were most likely from vehicle emissions, tire attrition and house heating sources. The correlation analysis showed that a strong relationship existed between estrogenic activity and anti-progesteronic activity in emissions of fossil fuel combustion. The discoveries that some environmental pollutants with estrogenic activity can also inhibit OR activity indicate that further studies are required to investigate potential mechanisms for the reported estrogenic activities of these pollutants. (c) 2005 Elsevier B.V. All rights reserved.