992 resultados para Calcium ion


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new benthic foraminiferal Ba/Ca and Cd/Ca data set from core RC13-229 in the deep Cape Basin indicates only small variations in bottom water nutrient concentrations in Circumpolar Deep Water (CPDW) over the last 450 kyr. Variability in the Ba record is characterized by somewhat higher values during glacial periods, consistent with a reduction in the flux of Ba-depleted North Atlantic Deep Water to the Southern Ocean during glacial periods. The small changes in the Ba and Cd records contrast with the large and systematic increase in CPDW nutrients during glacial periods implied by the benthic delta13C record. This discrepancy, essentially an extension of the well-known Southern Ocean Cd-delta13C conflict, is evaluated by transforming RC13-229 paleochemical data into carbonate parameters using the modern oceanic relationships between delta13C, Cd, and SumCO2 and between Ba and alkalinity. Calculations using Cd/Ca to estimate past variations in CPDW SumCO2 and Ba/Ca to estimate past variations in CPDW alkalinity yield carbonate ion concentrations that exceed calcite saturation throughout the record length, with generally higher carbonate ion values associated with glacial intervals (opposite in sense to the RC13-229 %CaCO3 record). Substituting delta13C to estimate SumCO2 leads to extreme calcite undersaturation at this site during glacial periods, clearly inconsistent with the preservation of calcite throughout the length of RC13-229. Accepting the carbon isotope record as a direct measure of past variations in CPDW SumCO2 concentrations requires that both the Cd and Ba evidence for limited nutrient and alkalinity changes be disregarded.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The calcium isotopic composition of porewaters and authigenic carbonates in the anoxic sediments of a convergent continental margin drilled during Ocean Drilling Program (ODP) provides first insight into the different processes that control Ca geochemistry in clastic marine, organic-rich sedimentary environments. In 4 sites drilled during Leg 204 at Hydrate Ridge (Cascadia Margin, offshore Oregon/USA), sulfate is consumed during anaerobic oxidation of methane and of organic matter via sulfate reduction within the upper meters of the sedimentary section. These reactions promote the precipitation of authigenic carbonates through the generation of bicarbonate, which is reflected in a pronounced decrease in calcium concentration. Although Ca isotope fractionation is observed during carbonate precipitation, Ca concentration in the pore fluids from ODP Leg 204 is decoupled from Ca isotopy, which seems to be mainly controlled by the release of light Ca isotopes that completely overprint the carbonate formation effect. Different processes, such as the release of organically bound Ca, ion exchange and ion pair formation may be responsible for the released light Ca. Deeper within the sedimentary section, additional processes such as ash alteration influence the Ca isotopic composition of the porewater. Two sites, drilled into the deeper core of the accretionary prism, reveal the nature of fluids which have reacted with the oceanic basement. These deep fluids are characterized by relatively high Ca concentrations and low d44/40Ca ratios.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concentratios of Cl-, Mg2+, Ca2+, and HCO3- ions were studied in rain waters and condensed atmospheric moisture above the Atlantic Ocean. Maximal number of samples was collected in the eastern tropical North Atlantic. Concentration of chloride ions ranged from 1 to 28 mg/l in rain waters (average 4.3 mg/l) and ranged from 0.3 to 2 mg/l in condensed atmospheric moisture with the average about one order of magnitude less than that for rain waters. Chloride normalized concentrations of magnesium and calcium are greater in rain waters and condensed atmospheric moisture than in ocean water due to more intensive subtraction of these ions as compared to chloride ions. Chloride normalized HCO3- concentration is one order of magnitude greater in atmospheric moisture than in seawater, possibly because of volatile component CO2 taking part in exchange between the ocean and the atmosphere.

Relevância:

30.00% 30.00%

Publicador: