996 resultados para Calc
Resumo:
1. Great Meteor Seamount (GMS) is a very large (24,000 km**3) guyot with a flat summit plateau at 330-275 m; it has a volcanic core, capped by 150-600 m of post-Middle-Miocene carbonate and pyroclastic rocks, and is covered by bioclastic sands. The much smaller Josephine Seamount (JS, summit 170- 500 m w. d.) consists mainly of basalt which is only locally covered by limestones and bioclastic sands. 2. The bioclastic sands are almost free of terrigenous components, and are well sorted, unimodal medium sands. (1) "Recent pelagic sands" are typical of water depths > 600 m (JS) or > 1000 m (GMS). (2) "Sands of mixed relict-recent origin" (10-40% relict) and (3) "relict sands" (> 40% relict) are highly reworked, coarse lag deposits from the upper flanks and summit tops in which recent constituents are mixed with Pleistocene or older relict material. 3. From the carbonate rocks of both seamounts, 12 "microfacies" (MF-)types were distinguished. The 4 major types are: (1) Bio(pel)sparites (MF 1) occur on the summit plateaus and consist of magnesian calcite cementing small pellets and either redeposited planktonic bioclasts or mixed benthonic-planktonic skeletal debris ; (2) Porous biomicrites (MF 2) are typical of the marginal parts of the summit plateaus and contain mostly planktonic foraminifera (and pteropods), sometimes with redeposited bioclasts and/or coated grains; (3) Dense, ferruginous coralline-algal biomicrudites with Amphistegina sp. (MF 3.1), or with tuffaceous components (MF 3.2); (4) Dense, pelagic foraminiferal nannomicrite (MF 4) with scattered siderite rhombs. Corresponding to the proportion and mineralogical composition of the bioclasts and of the (Mgcalcitic) peloids, micrite, and cement, magnesian calcite (13-17 mol-% MgCO3) is much more abundant than low-Mg calcite and aragonite in rock types (1) and (2). Type (3) contains an "intermediate" Mg-calcite (7-9 mol-X), possibly due to an original Mg deficiency or to partial exsolution of Mg during diagenesis. The nannomicrite (4) consists of low-Mg calcite only. 4. Three textural types of volcanic and associated gyroclastic rocks were distinguished: (1) holohyaline, rapidly chilled and granulated lava flows and tuffs (palagonite tuff breccia and hyaloclastic top breccia); (2) tachylitic basalts (less rapidly chilled; with opaque glass); and (3) "slowly" crystallized, holocrystalline alkali olivine basalts. The carbonate in most mixed pyroclastic-carbonate sediments at the basalt contact is of "post-eruptive" origin (micritic crusts etc.); "pre-eruptive" limestone is recrystallized or altered at the basalt contact. A deuteric (?hydrothermal) "mineralX", filling vesicles in basalt and cementing pyroclastic breccias is described for the first time. 5. Origin and development of GMS andJS: From its origin, some 85 m. y. ago, the volcano of GMS remained active until about 10 m. y. B. P. with an average lava discharge of 320 km**3/m. y. The volcanic origin of JS is much younger (?Middle Tertiary), but the volcanic activity ended also about 9 m. y. ago. During L a t e Miocene to Pliocene times both volcanoes were eroded (wave-rounded cobbles). The oldest pyroclastics and carbonates (MF 3.1, 3.2) were originally deposited in shallow-water (?algal reef hardground). The Plio (-Pleisto) cene foraminiferal nannomicrites (MF 4) suggest a meso- to bathypelagic environment along the flanks of GMS. During the Quaternary (?Pleistocene) bioclastic sands were deposited in water depths beyond wave base on the summit tops, repeatedly reworked, and lithified into loosely consolidated biopelsparites and biomicrites (MF 1 and 2; Fig. 15). Intermediate steps were a first intragranular filling by micrite, reworking, oncoidal coating, weak consolidation with Mg-calcite cemented "peloids" in intergranular voids and local compaction of the peloids into cryptocrystalline micrite with interlocking Mg-calcite crystals up to 4p. The submarine lithification process was frequently interrupted by long intervals of nondeposition, dissolution, boring, and later infilling. The limestones were probably never subaerially exposed. Presently, the carbonate rocks undergo biogenic incrustation and partial dissolution into bioclastic sands. The irregular distribution pattern of the sands reflects (a) the patchy distribution of living benthonic organisms, (b) the steady rain of planktonic organism onto the seamount top, (c) the composition of disintegrating subrecent limestones, and (d) the intensity of winnowing and reworking bottom current
Resumo:
Surface sediments from 5 profiles between 30 and 3000 m water depth off W Africa (12-19° N) have been studied for their sand fraction composition and their total calcium carbonate and organic matter contents to evaluate the effect of climatic and hydrographic factors on actual sedimentation. On the shelf and upper slope (< 500 m), currents prevent the deposition of significant amounts of fine-grained material. The sediments forming here are characterized by high sand contents (> 60 %; in most samples > 89 %), low organic carbon contents (in most samples < 0.8 %), high median diameters of the sand fraction (120-500 µm), and by a predominance of quartz and biogenic relict shells (most abundant: molluscs and bryozoans) in the sand fraction. Median diameters of total sand fraction and of major biogenic sand fraction components (biogenic relict material, benthonic molluscs, benthonic and planktonic foraminifers) co-vary to some extent and show maximum values in 100-300 m water depth, reflectingthe sorting effect of currents (perhaps the northward flowing undercurrent). In this water depth, biogenic relict material is considerably enriched relative to wuartz, the second dominating sand fraction component on the shelf and upper slope, resulting in distinct calcium carbonate maxima of the bulk sediments. The influence of the undercurrent is also reflected in a northward transport of fine grained river load and perhaps in the distribution of the red stained, coarse silt and sand-size clay aggregates, which show maxima in 300-500 m water depth. They probably originate from tropical soils. Abundant coarse red-stained quartz on the shelf off Cape Roxo (12-130° N) suggests a southward extension of last glacial dune fields to this latitude. Below about 500 m water depth, current influence becomes negligible - as indicated by a strong decrease in sand content, a concomitant increase in sedimentary organic carbon contents (up to 2.5-3.5 %), and the occurence of high mica/quartz ratios in the sand fraction. Downslope transport, presumably due to the bioturbation mechanism, is indicated by the presence of coarse shelf-borne particles (glauconite, relict shells) down to about 1000 m water depth. The fine/coarse ratio (clay + silt/sand) of the sediments from water deoth > 500 m never exceed a value of 11 in northern latitudes (19° - 26° N), but shows distinct maxima, ranging from 50 to 120, at latitudes 18°, 17° 15°30', and 14° N in about 2000 m water depth. This distribution is attributed to the deposition of fine-grained river load at the continental slope between 18° and 14° N, brought into the sea by the Senegal and souther rivers and transported northward ny the undercurrent. Strong calcium carbonate dissolution is indicated by the complete disappearance of pteropodes (aragonite) and high fragmentation of the planktoic foraminifers (calcite) in sediments from water depth > 300-600 m. Fragmentation ratios of planktonic foraminifers were found to depend on the organic carbon/carbonate ratios of the sediment suggesting that calcite dissolution at the sea bottom may also be significant in shelf and continental slope water depths if the organic matter/carbonate ratio of the surface sediment is high and the test remain long enough within the oxidizing layer on the top of the sulfate reduction zone. The fact that in the region under study intensity and anual duration of upwelling decrease from north to south is neither reflected in the composition on the sand fraction (i.e. radiolarian and fish debris contents, radiolarian/planktonic foraminiferal ratios, benthos/plankton ratios of foraminifers), nor in the sedimentary organic carbon distribution. On the contrary, these parameters even show in comparable water depths a tendency for highest values in the south, partly because primary production rates remain high in the whole region, particularly on the shelf, due to the nutrient input by rivers in the south. In addition, several hydrographic, sedimentological and climatic factors severely affect their distribution - for example currents, dissolution, grain size composition, deposition of river load, and bulk sedimentation rats.
Resumo:
We compared lifetime and population energy budgets of the extraordinary long-lived ocean quahog Arctica islandica from 6 different sites - the Norwegian coast, Kattegat, Kiel Bay, White Sea, German Bight, and off northeast Iceland - covering a temperature and salinity gradient of 4-10°C (annual mean) and 25-34, respectively. Based on von Bertalanffy growth models and size-mass relationships, we computed organic matter production of body (PSB) and of shell (PSS), whereas gonad production (PG) was estimated from the seasonal cycle in mass. Respiration (R) was computed by a model driven by body mass, temperature, and site. A. islandica populations differed distinctly in maximum life span (40 y in Kiel Bay to 197 y in Iceland), but less in growth performance (phi' ranged from 2.41 in the White Sea to 2.65 in Kattegat). Individual lifetime energy throughput, as approximated by assimilation, was highest in Iceland (43,730 kJ) and lowest in the White Sea (313 kJ). Net growth efficiency ranged between 0.251 and 0.348, whereas lifetime energy investment distinctly shifted from somatic to gonad production with increasing life span; PS/PG decreased from 0.362 (Kiel Bay, 40 y) to 0.031 (Iceland, 197 y). Population annual energy budgets were derived from individual budgets and estimates of population mortality rate (0.035/y in Iceland to 0.173/y in Kiel Bay). Relationships between budget ratios were similar on the population level, albeit with more emphasis on somatic production; PS/ PG ranged from 0.196 (Iceland) to 2.728 (White Sea), and P/B ranged from 0.203-0.285/y. Life span is the principal determinant of the relationship between budget parameters, whereas temperature affects net growth efficiency only. In the White Sea population, both growth performance and net growth efficiency of A. islandica were lowest. We presume that low temperature combined with low salinity represent a particularly stressful environment for this species.
Resumo:
The Duolong porphyry Cu-Au deposit (5.4 Mt at 0.72% Cu, 41 t at 0.23 g/t Au), which is related to the granodiorite porphyry and the quartz-diorite porphyry from the Bangongco copper belt in central Tibet, formed in a continental arc setting. Here, we present the zircon U-Pb ages, geochemical whole-rock, Sr-Nd whole-rock and zircon in-situ Hf-O isotopic data for the Duolong porphyries. Secondary ion mass spectrometry (SIMS) zircon U-Pb analyses for six samples yielded consistent ages of ~118 Ma, indicating a Cretaceous formation age. The Duolong porphyries (SiO2 of 58.81-68.81 wt.%, K2O of 2.90-5.17 wt.%) belong to the high-K calc-alkaline series. They show light rare earth element (LREE)-enriched distribution patterns with (La/Yb)N = 6.1-11.7, enrichment in large ion lithophile elements (e.g., Cs, Rb, and Ba) and depletion of high field strength elements (e.g., Nb), with negative Ti anomalies. All zircons from the Duolong porphyries share relatively similar Hf-O isotopic compositions (d18O=5.88-7.27 per mil; eHf(t)=3.6-7.3), indicating that they crystallized from a series of cogenetic melts with various degrees of fractional crystallization. This, along with the general absence of older inherited zircons, rules out significant crustal contamination during zircon growth. The zircons are mostly enriched in d18O relative to mantle values, indicating the involvement of an 18O-enriched crustal source in the generation of the Duolong porphyries. Together with the presence of syn-mineralization basaltic andesite, the mixing between silicic melts derived from the lower crust and evolved H2O-rich mafic melts derived from the metsomatizied mantle wedge, followed by subsequent fractional crystallization (FC) and minor crustal contamination in the shallow crust, could well explain the petrogenesis of the Duolong porphyries. Significantly, the hybrid melts possibly inherited the arc magma characteristics of abundant F, Cl, Cu, and Au elements and high oxidation state, which contributed to the formation of the Duolong porphyry Cu-Au deposit.
Resumo:
The NWW-striking Qinling Orogen formed in the Triassic by collision between the North China and Yangtze Cratons. Triassic granitoid intrusions, mostly middle- to high-K, calc-alkaline in composition, are widespread in this orogen, but contemporaneous intrusions are rare in the southern margin of the North China Craton, an area commonly considered as the hinterland belt of the orogen. In this paper, we report zircon U-Pb ages, elemental geochemistry, and Sr-Nd-Hf isotope data for the Laoniushan granitoid complex that was emplaced in the southern margin of the North China Craton. Zircon U-Pb dating shows that the complex was emplaced in the late Triassic (228±1 to 215±4 Ma), indicating that it is part of the post-collisional magmatism in the Qinling Orogen. The complex consists of, from early to late, biotite monzogranite, quartz diorite, quartz monzonite, and hornblende monzonite, which have a wide compositional range, e.g., SiO2=55.9-70.6 wt%, K2O+Na2O=6.6-10.2 wt%, and Mg# of 24 to 54. Rocks of the biotite monzogranite have high Al2O3(15.5-17.4 wt%), Sr(396-1398 ppm) and Ba(1284-3993 ppm) contents and La/Yb(mostly 14-30) and Sr/Y(mostly 40-97) ratios, but low Yb(mostly 1.3-1.6 ppm) and Y(mostly14-19 ppm) contents, features typical of adakite. The quartz monzonite, hornblende monzonite and quartz diorite have a shoshonitic affinity, with K2O up to 5.58 wt% and K2O/Na2O ratios averaging 1.4. The rocks are characterized by strong LREE/HREE fractionation in chondrite-normalized REE pattern, without obvious Eu anomalies, and show enrichment in large ion lithophile elements but depletion in high field strength elements (Nb, Ta, Ti). The biotite monzogranite (228 Ma) has initial 87Sr/86Sr ratios of 0.7061 to 0.7067, eNd(t) values of -9.2 to -12.6, and ?Hf(t) values of -9.0 to -15.1; whereas the shoshonitic granitoids (mainly 217-215 Ma) have similar initial 87Sr/86Sr ratios (0.7065 to 0.7075) but more radiogenic eNd(t) (-12.4 to -17.0) and eHf(t) (-14.1 to -17.0). The Sr-Nd-Hf isotope data indicate that the rocks were likely generated by partial melting of an ancient lower continental crust with heterogeneous compositions, as partly confirmed by the widespread presence of the early Paleoproterozoic inherited zircons. Mafic microgranular enclaves (MMEs), characterized by fine-grained igneous textures and an abundance of acicular apatites, are common in the Laoniushan complex. Compared with the host rocks, they have lower SiO2 (48.6-53.7 wt.%) and higher Mg# (51-56), Cr (122-393 ppm), and Ni (24-79 ppm), but equivalent Sr-Nd isotope compositions, indicating that the MMEs likely originated from an ancient enriched lithospheric mantle. The abundance of MMEs in the granitoid intrusions suggests that magma mixing plays an important role in the generation of the Laoniushan complex. Collectively, it is suggested that the Laoniushan complex was a product of post-collisional magmatism related to lithospheric extension following slab break-off. Formation of the adakitic and shoshonitic intrusions in the Laoniushan complex indicates that the Qinling Orogen had evolved into a post-collisional setting by about 230-210 Ma.
Resumo:
Not all boninites are glassy lavas. Those of Hole 458 in the Mariana fore-arc region are submarine pillow lavas and more massive flows in which glass occurs only in quenched margins. Pillow and flow interiors have abundant Plagioclase spherulites, microlites, or even larger crystals but can be recognized as boninites by (1) occurrence of bronzite, (2) presence of augite-bronzite microphenocryst intergrowths, and (3) reversal of the usual basaltic groundmass crystallization sequence of plagioclase-augite to augite-plagioclase. The latter is accentuated by sharply contrasting augite and Plagioclase crystal morphologies near pillow margins, a consequence of rapid cooling rates. This crystallization sequence appears to be a consequence of boninites having higher SiO2 and Mg/Mg + Fe than basalts but lower CaO/Al2O3. Microprobe data are used to illustrate the effects of rapid cooling on the compositions of pyroxene and microphenocrysts in a glassy boninite sample and to estimate temperatures of crystallization of coexisting bronzite and augite. A range from 1320°C to 1200°C is calculated with an average of 1250°C. This is higher by 120°-230° than the known range for western Pacific arc tholeiites and by over 300° than for calc-alkalic andesites. Boninites of Hole 458 lack olivine and clinoenstatite but are otherwise chemically and petrographically similar to boninites that have these minerals. In order to distinguish the two types, the Hole 458 lavas are here termed boninites and the others are termed olivine boninites. Arc tholeiite pillow lavas from Holes 458 and 459B are briefly described and their textures compared to fractionated, moderately iron-enriched, abyssal tholeiites. Massive tholeiite flows contain striking quartz-alkali feldspar micrographic intergrowths with coarsely spherulitic textures resulting from in situ magmatic differentiation. Such intergrowths are rare in massive abyssal tholeiites cored by DSDP and probably occur here because arc tholeiites have higher normative quartz at comparable degrees of iron enrichment - a result of higher oxygen fugacities and earlier separation of titanomagnetite - than abyssal tholeiites.
Resumo:
In the Leg 87A holes, 45 ash layers were sampled in Recent to upper Pliocene strata. The main volcanogenic deposits came from single eruptions or subcontemporaneous eruptions of cognate volcanoes. Some of them are mixed ashes produced from multiple eruptions and accumulated in reworked sediments. The petrographic and geochemical patterns indicate rhyolitic and dacitic compositions; andesitic glasses are scarce. We infer a magmatic affinity with calc-alkaline sources and a possible origin from the volcanic arc of southwestern Japan. A few samples may originate from the alkaline volcanism of southwestern Japan or the area south of Korea and the Sea of Japan.
Resumo:
Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12 degrees latitudes featuring a steep temperature gradient between the northern (28.5 degrees N, 21-27 degrees C) and southern (16.5 degrees N, 28-33 degrees C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29 degrees C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals
Resumo:
Recent changes in the dynamics of Greenland's marine terminating outlet glaciers indicate a rapid and complex response to external forcing. Despite observed ice front retreat and recent geophysical evidence for accelerated mass loss along Greenland's northwestern margin, it is unclear whether west Greenland glaciers have undergone the synchronous speed-up and subsequent slow-down as observed in southeastern glaciers earlier in the decade. To investigate changes in west Greenland outlet glacier dynamics and the potential controls behind their behavior, we derive time series of front position, surface elevation, and surface slope for 59 marine terminating outlet glaciers and surface speeds for select glaciers in west Greenland from 2000 to 2009. Using these data, we look for relationships between retreat, thinning, acceleration, and geometric parameters to determine the first-order controls on glacier behavior. Our data indicate that changes in front positions and surface elevations were asynchronous on annual time scales, though nearly all glaciers retreated and thinned over the decade. We found no direct relationship between retreat, acceleration, and external forcing applicable to the entire region. In regard to geometry, we found that, following retreat, (1) glaciers with grounded termini experienced more pronounced changes in dynamics than those with floating termini and (2) thinning rates declined more quickly for glaciers with steeper slopes. Overall, glacier geometry should influence outlet glacier dynamics via stress redistribution following perturbations at the front, but our data indicate that the relative importance of geometry as a control of glacier behavior is highly variable throughout west Greenland.
Resumo:
The distribution, biomass, and diversity of living (Rose Bengal stained) deep-sea benthic foraminifera (>30 µm) were investigated with multicorer samples from seven stations in the Arabian Sea during the intermonsoonal periods in March and in September/October, 1995. Water depths of the stations ranged between 1916 and 4425 m. The distribution of benthic foraminifera was compared with dissolved oxygen, % organic carbon, % calcium carbonate, ammonium, % silica, chloroplastic pigment equivalents, sand content, pore water content of the sediment, and organic carbon flux to explain the foraminiferal patterns and depositional environments. A total of six species-communities comprising 178 living species were identified by principal component analysis. The seasonal comparison shows that at the western stations foraminiferal abundance and biomass were higher during the Spring Intermonsoon than during the Fall Intermonsoon. The regional comparison indicates a distinct gradient in abundance, biomass, and diversity from west to east, and for biomass from north to south. Highest values are recorded in the western part of the Arabian Sea, where the influence of coastal and offshore upwelling are responsible for high carbon fluxes. Estimated total biomass of living benthic foraminifera integrated for the upper 5 cm of the sediment ranged between 11 mg Corg m**-2 at the southern station and 420 mg Corg m**-2 at the western station. Foraminifera in the size range from 30 to 125 ?m, the so-called microforaminifera, contributed between 20 and 65% to the abundance, but only 3% to 28% to the biomass of the fauna. Highest values were found in the central and southern Arabian Sea, indicating their importance in oligotrophic deep-sea areas. The overall abundance of benthic foraminifera is positively correlated with oxygen content and pore volume, and partly with carbon content and chloroplastic pigment equivalents of the sediment. The distributional patterns of the communities seem to be controlled by sand fraction, dissolved oxygen, calcium carbonate and organic carbon content of the sediment, but the critical variables are of different significance for each community.
Resumo:
Geophysical surveys of the Mariana forearc, in an area equidistant from the Mariana Trench and the active Mariana Island Arc, revealed a 40-m-deep graben about 13 km northwest of Conical Seamount, a serpentine mud volcano. The graben and its bounding horst blocks are part of a fault zone that strikes northwest-southeast beneath Conical Seamount. One horst block was drilled during Leg 125 of the Ocean Drilling Program (Site 781). Three lithologic units were recovered at Site 781: an upper sedimentary unit, a middle basalt unit, and a lower sedimentary unit. The upper unit, between 0 and 72 mbsf, consists of upper Pliocene to Holocene diatomaceous and radiolarian-bearing silty clay that grades down into vitric silty clay and vitric clayey silt. The middle unit is a Pleistocene vesicular, porphyritic basalt, the top of which corresponds to a high-amplitude reflection on the reflection profiles. The lower unit is a middle to upper (and possibly some lower) Pliocene vitric silty clay and vitric clayey silt similar to the lower part of the upper unit. The thickness of the basalt unit can only be estimated to be between 13 and 25 m because of poor core recovery (28% to 55%). The absence of internal flow structures and the presence of an upper glassy chilled zone and a lower, fine-grained margin suggest that the basalt unit is either a single lava flow or a near-surface sill. The basalt consists of plagioclase phenocrysts with subordinate augite and olivine phenocrysts and of plagioclase-augite-olivine glomerocrysts in a groundmass of plagioclase, augite, olivine, and glass. The basalt is an island arc tholeiite enriched in large-ion-lithophile elements relative to high-field-strength elements, similar to the submarine lavas of the southern arc seamounts. In contrast, volcanic rocks from the active volcanoes on Pagan and Agrigan islands, 100 km to the west of the drill site, are calc-alkaline. The basalt layer, the youngest in-situ igneous layer reported from the Izu-Bonin and Mariana forearcs, is enigmatic because of its location more than 100 km from the active volcanic arc. The sediment layers above and below the basalt unit are late Pliocene in age (about 2.5 Ma) and normally magnetized. The basalt has schlierenlike structures, reverse magnetization, and a K-Ar age of 1.68±0.37 Ma. Thus, the basalt layer is probably a sill fed by magma intruded along a fault zone bounding the horst and graben in the forearc. The geochemistry of the basalt is consistent with a magma source similar to that of the active island arc and from a mantle source above the subducting Pacific plate.
Resumo:
During Leg 112 off Peru, volcanic material was recorded from middle Eocene to Holocene time. The petrographical and chemical composition of tephra is consistent with an origin from the Andean volcanic arc. The amount and thickness of ash layers provide valuable evidence for explosive volcanic episodicity. The first indication of volcanism was found in mid-Eocene sediments. Three volcanic pulses date from Miocene time. Two intense episodes took place in upper Pliocene and from Pleistocene to Holocene time. Pliocene-Pleistocene tephra are restricted to the southern upper-slope and shelf sites, indicating a removal of the volcanic arc and the extinction of the northern Peru volcanoes. The Cenozoic tectonic phases of the Andean margin may be correlated with the Leg 112 volcanic records. The explosive supply of evolved magmatic products succeeded the Incaic and Quechua tectonic phases. Acidic glasses are related to both andesitic and shoshonitic series. The calc-alkaline factor (CAF) of these glasses exhibited moderate magmatic variations during middle and late Miocene time. A dramatic change occurred during the Pliocene-Pleistocene, reflected in a strong CAF increase and the appearance of potassium-rich evolved shoshonitic glasses. This took place when the Nazca Ridge subduction began. This change in the magma genesis and/or differentiation conditions is probably related to thickening of the upper continental plate and to a new configuration of the Benioff Zone.
Resumo:
Geochemical investigations were conducted on 10 discrete ash layers and 22 samples of dispersed ash accumulations from Sites 747, 749, and 751 of Ocean Drilling Program (ODP) Leg 120 to the Kerguelen Plateau in the southern Indian Ocean. The chemical data obtained from some 400 single-grain glass analyses allow the characterization of two rock series. The first consists of transitional to alkali basalts; the second, mainly of trachytes with subordinated rhyolites, all reflecting the characteristic magmatological evolution of the Kerguelen Plateau as a hotspot-related volcanism. Chemical correlation with possible source areas indicates that the ashes were most probably erupted from the Kerguelen Islands. The investigated ash layers clearly reflect the Oligocene to Quaternary changes in the composition of the volcanic material recorded from the Kerguelen Islands. In addition to the Kerguelen Islands, Heard Island, Crozet Island, and other sources may have contributed to deposition of the tephras. Pleistocene tephras of "exotic" calc-alkaline composition are most probably derived from enhanced magmatic activity during that time span at the South Sandwich island arc. When using data obtained from tephras of the ODP Leg 119 Kerguelen sites, several eruptive periods can be correlated through the composition of the deposited ashes. Some of them are widely distributed over the Kerguelen Plateau and are seen as a first step toward a southern Indian Ocean tephrostratigraphy.
Resumo:
Positions of all cores recovered during Ocean Drilling Program (ODP) Leg 112 off Peru are shown in the standard calcareous nannoplankton zonation. Stratigraphic and regional occurrences and preservation of calcareous nannoplankton are discussed for all sites, and fossil lists are presented for selected samples. Late Miocene to Holocene nannoplankton assemblages in the upwelling systems off Peru and scattered blooms, especially of Gephyrocapsa species and Helicosphaera carteri, are described. Scyphosphaera assemblages found in late Miocene Zone NN9 {Discoaster hamatus Zone) at Site 684 are compared with similar assemblages from Gabon on the west coast of Africa. Remarkable subsidence is indicated by early and middle Eocene nearshore and shallow-water nannoplankton assemblages for Sites 682, 683, and 688. Besides several local hiatuses, major regional hiatuses were noted at Site 682 (upper Eocene, uppermost middle Eocene, and part of the lower and middle Oligocene missing), Site 683 (uppermost middle Eocene to lower part of the middle Miocene missing), and Site 688 (part of the middle Eocene, uppermost middle Eocene to upper Oligocene, and parts of the lower and middle Miocene missing).
Resumo:
Seven sites were drilled off the eastern shore of New Zealand during Ocean Drilling Program Leg 181 to gain knowledge of southwest Pacific ocean history, in particular, the evolution of the Pacific Deep Western Boundary Current (DWBC). Holes 1123C and 1124C penetrated lower Oligocene to middle Eocene sediments containing moderately to poorly preserved calcareous nannofossils. Nannofossil assemblages show signs of dissolution and overgrowth, but key marker species can be identified. Nannofossil abundance ranges from abundant to barren. The lower Oligocene sediments are distinctly separated from the overlying Neogene sequences by the Marshall Paraconformity, a regional marker of environmental and sea level change. An age-depth model for Hole 1123C through this sequence was constructed using nine nannofossil age datums and three magnetostratigraphic datums. There is good agreement between the biostratigraphy and magnetostratigraphy, which indicates that the Marshall Paraconformity spans ~12 m.y. in Hole 1123C. The same sequence in Hole 1124C is disrupted by at least three hiatuses, complicating interpretation of the sedimentation history. The Marshall Paraconformity spans at least 3 m.y. in Hole 1124C. A 4- m.y. gap separates lower Oligocene and middle Eocene sediments, and a ~15 m.y. hiatus separates middle Eocene mudstones from middle Paleocene nannofossil-bearing mudstones. Nannofossil biostratigraphy from Holes 1123C and 1124C indicates that the Eocene-Oligocene transition was a time of fluctuating biota and intensification of the DWBC along the New Zealand margin.