987 resultados para CURRENT TRANSIENT SPECTROSCOPY


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this investigation Raman spectroscopy was shown to be a method that could be used to monitor the polymerisation of PMMA bone cement. Presently there is no objective method that orthopaedic surgeons can use to quantify the curing process of cement during surgery. Raman spectroscopy is a non-invasive, non-destructive technique that could offer such an option. Two commercially available bone cements (Palacos® R and SmartSet® HV) and different storage conditions (4 and 22°C) were used to validate the technique. Raman spectroscopy was found to be repeatable across all conditions with the completion of the polymerisation process particularly easy to establish. All tests were benchmarked against current temperature monitoring methods outlined in ISO and ASTM standards. There was found to be close agreement with the standard methods and the Raman spectroscopy used in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small salient-pole machines, in the range 30 kVA to 2 MVA, are often used in distributed generators, which in turn are likely to form the major constituent of power generation in power system islanding schemes or microgrids. In addition to power system faults, such as short-circuits, islanding contains an inherent risk of out-of-synchronism re-closure onto the main power system. To understand more fully the effect of these phenomena on a small salient-pole alternator, the armature and field currents from tests conducted on a 31.5 kVA machine are analysed. This study demonstrates that by resolving the voltage difference between the machine terminals and bus into direct and quadrature axis components, interesting properties of the transient currents are revealed. The presence of saliency and short time-constants cause intriguing differences between machine events such as out-of-phase synchronisations and sudden three-phase short-circuits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Time of flight (ToF) mass spectrometer suitable in terms of sensitivity, detector response and time resolution, for application in fast transient Temporal Analysis of Products (TAP) kinetic catalyst characterization is reported. Technical difficulties associated with such application as well as the solutions implemented in terms of adaptations of the ToF apparatus are discussed. The performance of the ToF was validated and the full linearity of the specific detector over the full dynamic range was explored in order to ensure its applicability for the TAP application. The reported TAP-ToF setup is the first system that achieves the high level of sensitivity allowing monitoring of the full 0-200 AMU range simultaneously with sub-millisecond time resolution. In this new setup, the high sensitivity allows the use of low intensity pulses ensuring that transport through the reactor occurs in the Knudsen diffusion regime and that the data can, therefore, be fully analysed using the reported theoretical TAP models and data processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of differentiating between active and spectator species that have similar infrared spectra has been addressed by developing short time-on-stream in situ spectroscopic transient isotope experimental techniques (STOS-SSITKA). The techniques have been used to investigate the reaction mechanism for the reduction of nitrogen oxides (NOx) by hydrocarbons under lean-burn (excess oxygen) conditions on a silver catalyst. Although a nitrate-type species tracks the formation of isotopically labeled dinitrogen, the results show that this is misleading because a nitrate-type species has the same response to an isotopic switch even under conditions where no dinitrogen is produced. In the case of cyanide and isocyanate species, the results show that it is possible to differentiate between slowly reacting spectator isocyanate species, probably adsorbed on the oxide support, and reactive isocyanate species, possibly on or close to the active silver phase. The reactive isocyanate species responds to an isotope switch at a rate that matches that of the rate of formation of the main product, dinitrogen. It is concluded that these reactive isocyanates could potentially be involved in the reduction of NOx whereas there is no evidence to support the involvement of nitrate-type species that are observable by infrared spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mechanistic study of the H-2-assisted Selective Catalytic Reduction (SCR) of NOx with octane as reductant over a Ag/Al2O3 catalyst was carried out using a modified DRIFTS cell coupled to a mass spectrometer Using fast transient cycling switching of H-2 with a time resolution of a few seconds It was possible to differentiate potential reaction intermediates from other moieties that are clearly spectator species Using such a periodic operation mode effects were uncovered that are normally hidden in conventional transient studies which typically consist of a single transient In experiments based on a single transient addition of H-2 to or removal of H-2 from the SCR feed it was found that the changes in the concentrations of gaseous species (products and reactants) were not matched by changes at comparable timescales of the concentration of surface species observed by IR This observation indicates that the majority of sur face species observed by DRIFTS under steady-state reaction conditions are spectators In contrast under fast cycling experimental conditions It was found that a surface isocyanate species had a temporal response that matched that of N-15(2) This suggests that some of the isocyanate species observed by infrared spectroscopy could be important intermediates in the hydrogen-assisted SCR reaction although it is emphasised that this may be dependent on the way in which the infrared spectra are obtained It is concluded that the use of fast transient cycling switching techniques may provide useful mechanistic information under certain circumstances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vibrational Raman spectroscopy is now widely recognized as a useful technique for chemical analysis. It has become increasingly popular for the characterization of stable species since the technology which underpins Raman measurements has matured. Time-resolved Raman spectroscopy has also become established as an excellent method for the characterization of transient chemical species but it is not so widely applied. However, the technical advances which have reduced the cost and increased the reliability of conventional: Raman systems can also be exploited in studies of transient species. In some cases it is just as straightforward to record the Raman-spectra of a short-lived transient species as it is to monitor a more stable sample. This raises the possibility of routinely adding time-domain Raman measurements to more conventional Raman techniques, increasing the selectivity of the analysis while retaining its ability to provide spectral information which is characteristic of the species under investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies by laser flash photolysis, transient Raman spectroscopy, and Raman and UV-vis spectroelectrochemistry are described in which the techniques have been used in parallel to compare the lowest energy charge-transfer excited states of Cu (1) complexes ([Cu(L)2]+ and [ (PPh3)2Cu(L)]+ [L = 2,2'-biquinoline (BIQ) or 6,7-dihydro-5,8-dimethyldibenzo[b,j] [1,10]-phenanthroline (DMCH)) with the species produced by electrochemical reduction in the same group of complexes. Transient resonance Raman spectra for the metal-to-ligand charge-transfer (MLCT) states of [Cu(DMCH)2]+ (1), [Cu(BIQ)2]+ (2), [Cu(DMCH)(PPh3)2]+ (3), and [Cu(BIQ)(PPh3)2]+ (4) are compared with the resonance Raman spectra of the same group of complexes following one-electron electrochemical reduction of the DMCH and BIQ ligands. The UV-vis and resonance Raman evidence suggests that the electrochemical reduction of the [Cu(I)L2]+ species proceeds according to the sequence [LCu(I)L]+ -->e- [LCu0L] -->e- [L.-Cu(I)L.-]-. Several features assignable to modes of the electrochemically generated DMCH.-and BIQ'- radical anions exhibit a close correspondence in both frequency and relative intensity with counterparts in the spectra of the MLCT states of 1 and 2. A notable exception is a band near 1590 cm-1 in the spectra of the electrochemically reduced species which occurs some 15 cm-1 lower in the corresponding spectra of the excited-state species. It is suggested that the shift may reflect the change in oxidation state of the metal center from Cu(I) to Cu(II) which occurs as a result of charge-transfer excitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transient outward rectifying conductances or A-like conductances in sympathetic preganglionic neurons (SPN) are prolonged, lasting for hundreds of milliseconds to seconds and are thought to play a key role in the regulation of SPN firing frequency. Here, a multidisciplinary electrophysiological, pharmacological and molecular single-cell rt-PCR approach was used to investigate the kinetics, pharmacological profile and putative K + channel subunits underlying the transient outward rectifying conductance expressed in SPN. SPN expressed a 4-aminopyridine (4-AP) sensitive transient outward rectification with significantly longer decay kinetics than reported for many other central neurons. The conductance and corresponding current in voltage-clamp conditions was also sensitive to the Kv4.2 and Kv4.3 blocker phrixotoxin-2 (1-10 µM) and the blocker of rapidly inactivating Kv channels, pandinotoxin-Ka (50 nM). The conductance and corresponding current was only weakly sensitive to the Kv1 channel blocker tityustoxin-Ka and insensitive to dendrotoxin I (200 nM) and the Kv3.4 channel blocker BDS-II (1 µM). Single-cell RT-PCR revealed mRNA expression for the a-subunits Kv4.1 and Kv4.3 in the majority and Kv1.5 in less than half of SPN. mRNA for accessory ß-subunits was detected for Kvß2 in all SPN with differential expression of mRNA for KChIP1, Kvß1 and Kvß3 and the peptidase homologue DPP6. These data together suggest that the transient outwardly rectifying conductance in SPN is mediated by members of the Kv4 subfamily (Kv4.1 and Kv4.3) in association with the ß-subunit Kvß2. Differential expression of the accessory ß subunits, which may act to modulate channel density and kinetics in SPN, may underlie the prolonged and variable time-course of this conductance in these neurons. © 2011 IBRO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article describes the trends in analytical techniques for the determination of trichothecene mycotoxins, namely deoxynivalenol, and T-2 and HT-2 toxins in cereals and cereal products with particular emphasis on screening and rapid approaches. The driving force behind the changing methodologies is mainly attributed to legislative demands. However, for commercial and governmental testing laboratories, the need to use validated official methods is ever increasing to ensure quality assurance of results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transient absorption spectroscopy (TAS) has been used to study the interfacial electron-transfer reaction between photogenerated electrons in nanocrystalline titanium dioxide (TiO2) films and molecular oxygen. TiO2 films from three different starting materials (TiO2 anatase colloidal paste and commercial anatase/rutile powders Degussa TiO2 P25 and VP TiO2 P90) have been investigated in the presence of ethanol as a hole scavenger. Separate investigations on the photocatalytic oxygen consumption by the films have also been performed with an oxygen membrane polarographic detector. Results show that a correlation exists between the electron dynamics of oxygen consumption observed by TAS and the rate of oxygen consumption through the photocatalytic process. The highest activity and the fastest oxygen reduction dynamics were observed with films fabricated from anatase TiO2 colloidal paste. The use of TAS as a tool for the prediction of the photocatalytic activities of the materials is discussed. TAS studies indicate that the rate of reduction of molecular oxygen is limited by interfacial electron-transfer kinetics rather than by the electron trapping/detrapping dynamics within the TiO2 particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze Space Telescope Imaging Spectrograph (STIS) spectra in the 1150-1700 Angstrom wavelength range obtained for six early B supergiants in the neighboring galaxy M31. Because of their likely high ( nearly solar) abundance, these stars were originally chosen to be directly comparable to their Galactic counterparts and represent a much needed addition to our current sample of B-type supergiants, in our efforts to study the dependence of the wind momentum-luminosity relationship on spectral type and metallicity. As a first step to determine wind momenta we fit the P Cygni profiles of the resonance lines of N V, Si IV, and C IV with standard methods and derive terminal velocities for all of the STIS targets. From these lines we also derive ionic stellar wind column densities. Our results are compared with those obtained previously in Galactic supergiants and confirm earlier claims of

Relevância:

30.00% 30.00%

Publicador:

Resumo:

G protein-coupled receptors (GPCRs) are a large superfamily of signaling proteins expressed on the plasma membrane. They are involved in a wide range of physiological processes and, therefore, are exploited as drug targets in a multitude of therapeutic areas. In this extent, knowledge of structural and functional properties of GPCRs may greatly facilitate rational design of modulator compounds. Solution and solid-state nuclear magnetic resonance (NMR) spectroscopy represents a powerful method to gather atomistic insights into protein structure and dynamics. In spite of the difficulties inherent the solution of the structure of membrane proteins through NMR, these methods have been successfully applied, sometimes in combination with molecular modeling, to the determination of the structure of GPCR fragments, the mapping of receptor-ligand interactions, and the study of the conformational changes associated with the activation of the receptors. In this review, we provide a summary of the NMR contributions to the study of the structure and function of GPCRs, also in light of the published crystal structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Voltage-gated sodium channels (VGSC) have been linked to inherited forms of epilepsy. The expression and biophysical properties of VGSC in the hippocampal neuronal culture model have not been clarified. In order to evaluate mechanisms of epileptogenesis that are related to VGSC, we examined the expression and function of VGSC in the hippocampal neuronal culture model in vitro and spontaneously epileptic rats (SER) in vivo. Our data showed that the peak amplitude of transient, rapidly–inactivating Na+ current (INa,T) in model neurons was significantly increased compared with control neurons, and the activation curve was shifted to the negative potentials in model neurons in whole cell recording by patch–clamp. In addition, channel activity of persistent, non-inactivating Na+ current (INa,P) was obviously increased in the hippocampal neuronal culture model as judged by single–channel patch–clamp recording. Furthermore, VGSC subtypes NaV1.1, NaV1.2 and NaV1.3 were up-regulated at the protein expression level in model neurons and SER as assessed by Western blotting. Four subtypes of VGSC proteins in SER were clearly present throughout the hippocampus, including CA1, CA3 and dentate gyrus regions, and neurons expressing VGSC immunoreactivity were also detected in hippocampal neuronal culture model by immunofluorescence. These findings suggested that the up-regulation of voltage-gated sodium channels subtypes in neurons coincided with an increased sodium current in the hippocampal neuronal culture model, providing a possible explanation for the observed seizure discharge and enhanced excitability in epilepsy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The airway epithelium is exposed to a range of physical and chemical irritants in the environment that are known to trigger asthma. Transient receptor potential (TRP) cation channels play a central role in sensory responses to noxious physical and chemical stimuli. Recent genetic evidence suggests an involvement of transient receptor potential vanilloid 1 (TRPV1), one member of the vanilloid subfamily of TRP channels, in the pathophysiology of asthma. The functional expression of TRPV1 on airway epithelium has yet to be elucidated.

OBJECTIVE: In this study we examined the molecular, functional, and immunohistochemical expression of TRPV1 in asthmatic and healthy airways.

METHODS: Bronchial biopsy specimens and bronchial brushings were obtained from healthy volunteers (n = 18), patients with mild-to-moderate asthma (n = 24), and patients with refractory asthma (n = 22). Cultured primary bronchial epithelial cells from patients with mild asthma (n = 4), nonasthmatic coughers (n = 4), and healthy subjects (n = 4) were studied to investigate the functional role of TRPV1.

RESULTS: Quantitative immunohistochemistry revealed significantly more TRPV1 expression in asthmatic patients compared with healthy subjects, with the greatest expression in patients with refractory asthma (P = .001). PCR and Western blotting analysis confirmed gene and protein expression of TRPV1 in cultured primary bronchial epithelial cells. Patch-clamp electrophysiology directly confirmed functional TRPV1 expression in all 3 groups. In functional assays the TRPV1 agonist capsaicin induced dose-dependent IL-8 release, which could be blocked by the antagonist capsazepine. Reduction of external pH from 7.4 to 6.4 activated a capsazepine-sensitive outwardly rectifying membrane current.

CONCLUSIONS: Functional TRPV1 channels are present in the human airway epithelium and overexpressed in the airways of patients with refractory asthma. These channels might represent a novel therapeutic target for the treatment of uncontrolled asthma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid growth of wind generation in many European countries is pushing power systems into
uncharted territory. As additional wind generators are installed, the changing generation mix may
impact on power system stability. This paper adopts the New England 39 bus system as a test
system for transient stability analysis. Thermal generator models are based on a likely future plant
mix for existing systems, while varying capacities of fixed-speed induction generators (FSIG) and
doubly-fed induction generators (DFIG) are considered. The main emphasis here has been placed
on the impact of wind technology mix on inter-area oscillations following transient grid
disturbances. In addition, both rotor angle stability and transient voltage stability are examined, and
results are compared with current grid code requirements and standards. Results have shown that
FSIGs can reduce tie-line oscillations and improve damping following a transient disturbance, but
they also cause voltage stability and rotor angle stability problems at high wind penetrations. In
contrast, DFIGs can improve both voltage and rotor angle stability, but their power output
noticeably oscillates during disturbances.