989 resultados para COMMON MARKETS
Resumo:
Desde o seu aparecimento, a Internet teve um desenvolvimento e uma taxa de crescimento quase exponencial. Os mercados de comércio electrónico têm vindo a acompanhar esta tendência de crescimento, tornando-se cada vez mais comuns e populares entre comerciantes ou compradores/vendedores de ocasião. A par deste crescimento também foi aumentando a complexidade e sofisticação dos sistemas responsáveis por promover os diferentes mercados. No seguimento desta evolução surgiram os Agentes Inteligentes devido à sua capacidade de encontrar e escolher, de uma forma relativamente eficiente, o melhor negócio, tendo por base as propostas e restrições existentes. Desde a primeira aplicação dos Agentes Inteligentes aos mercados de comércio electrónico que os investigadores desta área, têm tentado sempre auto-superar-se arranjando modelos de Agentes Inteligentes melhores e mais eficientes. Uma das técnicas usadas, para a tentativa de obtenção deste objectivo, é a transferência dos comportamentos Humanos, no que toca a negociação e decisão, para estes mesmos Agentes Inteligentes. O objectivo desta dissertação é averiguar se os Modelos de Avaliação de Credibilidade e Reputação são uma adição útil ao processo de negociação dos Agente Inteligentes. O objectivo geral dos modelos deste tipo é minimizar as situações de fraude ou incumprimento sistemático dos acordos realizados aquando do processo de negociação. Neste contexto, foi proposto um Modelo de Avaliação de Credibilidade e Reputação aplicável aos mercados de comércio electrónico actuais e que consigam dar uma resposta adequada o seu elevado nível de exigência. Além deste modelo proposto também foi desenvolvido um simulador Multi-Agente com a capacidade de simular vários cenários e permitir, desta forma, comprovar a aplicabilidade do modelo proposto. Por último, foram realizadas várias experiências sobre o simulador desenvolvido, de forma a ser possível retirar algumas conclusões para o presente trabalho. Sendo a conclusão mais importante a verificação/validação de que a utilização de mecanismos de credibilidade e reputação são uma mais-valia para os mercado de comércio electrónico.
Resumo:
Electricity markets are complex environments with very particular characteristics. A critical issue regarding these specific characteristics concerns the constant changes they are subject to. This is a result of the electricity markets’ restructuring, which was performed so that the competitiveness could be increased, but it also had exponential implications in the increase of the complexity and unpredictability in those markets scope. The constant growth in markets unpredictability resulted in an amplified need for market intervenient entities in foreseeing market behaviour. The need for understanding the market mechanisms and how the involved players’ interaction affects the outcomes of the markets, contributed to the growth of usage of simulation tools. Multi-agent based software is particularly well fitted to analyze dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. This dissertation presents ALBidS – Adaptive Learning strategic Bidding System, a multiagent system created to provide decision support to market negotiating players. This system is integrated with the MASCEM electricity market simulator, so that its advantage in supporting a market player can be tested using cases based on real markets’ data. ALBidS considers several different methodologies based on very distinct approaches, to provide alternative suggestions of which are the best actions for the supported player to perform. The approach chosen as the players’ actual action is selected by the employment of reinforcement learning algorithms, which for each different situation, simulation circumstances and context, decides which proposed action is the one with higher possibility of achieving the most success. Some of the considered approaches are supported by a mechanism that creates profiles of competitor players. These profiles are built accordingly to their observed past actions and reactions when faced with specific situations, such as success and failure. The system’s context awareness and simulation circumstances analysis, both in terms of results performance and execution time adaptation, are complementary mechanisms, which endow ALBidS with further adaptation and learning capabilities.
Resumo:
Mestrado em Contabilidade
Resumo:
The knowledge-based society we live in has stressed the importance of human capital and brought talent to the top of most wanted skills, especially to companies who want to succeed in turbulent environments worldwide. In fact, streams, sequences of decisions and resource commitments characterize the day-to-day of multinational companies (MNCs). Such decision-making activities encompass major strategic moves like internationalization and new market entries or diversification and acquisitions. In most companies, these strategic decisions are extensively discussed and debated and are generally framed, formulated, and articulated in specialized language often developed by the best minds in the company. Yet the language used in such deliberations, in detailing and enacting the implementation strategy is usually taken for granted and receives little if any explicit attention (Brannen & Doz, 2012) an can still be a “forgotten factor” (Marschan et al. 1997). Literature on language management and international business refers to lack of awareness of business managers of the impact that language can have not only in communication effectiveness but especially in knowledge transfer and knowledge management in business environments. In the context of MNCs, management is, for many different reasons, more complex and demanding than that of a national company, mainly because of diversity factors inherent to internationalization, namely geographical and cultural spaces, i.e, varied mindsets. Moreover, the way of functioning, and managing language, of the MNC depends on its vision, its values and its internationalization model, i.e on in the way the MNE adapts to and controls the new markets, which can vary essentially from a more ethnocentric to a more pluricentric focus. Regardless of the internationalization model followed by the MNC, communication between different business units is essential to achieve unity in diversity and business sustainability. For the business flow and prosperity, inter-subsidiary, intra-company and company-client (customers, suppliers, governments, municipalities, etc..) communication must work in various directions and levels of the organization. If not well managed, this diversity can be a barrier to global coordination and create turbulent environments, even if a good technological support is available (Feely et al., 2002: 4). According to Marchan-Piekkari (1999) the tongue can be both (i) a barrier, (ii) a facilitator and (iii) a source of power. Moreover, the lack of preparation for the barriers of linguistic diversity can lead to various costs, including negotiations’ failure and failure on internationalization.. On the other hand, communication and language fluency is not just a message transfer procedure, but above all a knowledge transfer process, which requires extra-linguistic skills (persuasion, assertiveness …) in order to promote credibility of both parties. For this reason, MNCs need a common code to communicate and trade information inside and outside the company, which will require one or more strategies, in order to overcome possible barriers and organization distortions.
Resumo:
Major depressive disorder (MDD) is a highly prevalent disorder, which has been associated with an abnormal response of the hypothalamus–pituitary–adrenal (HPA) axis. Reports have argued that an abnormal HPA axis response can be due to an altered P-Glycoprotein (P-GP) function. This argument suggests that genetic polymorphisms in ABCB1 may have an effect on the HPA axis activity; however, it is still not clear if this influences the risk of MDD. Our study aims to evaluate the effect of ABCB1 C1236T, G2677TA and C3435T genetic polymorphisms on MDD risk in a subset of Portuguese patients. DNA samples from 80 MDD patients and 160 control subjects were genotyped using TaqMan SNP Genotyping assays. A significant protection for MDD males carrying the T allele was observed (C1236T: odds ratio (OR) = 0.360, 95% confidence interval [CI]: [0.140– 0.950], p = 0.022; C3435T: OR= 0.306, 95% CI: [0.096–0.980], p = 0.042; and G2677TA: OR= 0.300, 95% CI: [0.100– 0.870], p = 0.013). Male Portuguese individuals carrying the 1236T/2677T/3435T haplotype had nearly 70% less risk of developing MDD (OR = 0.313, 95% CI: [0.118–0.832], p = 0.016, FDR p = 0.032). No significant differences were observed regarding the overall subjects. Our results suggest that genetic variability of the ABCB1 is associated with MDD development in male Portuguese patients. To the best of our knowledge, this is the first report in Caucasian samples to analyze the effect of these ABCB1 genetic polymorphisms on MDD risk.
Resumo:
In almost all industrialized countries, the energy sector has suffered a severe restructuring that originated a greater complexity in market players’ interactions. The complexity that these changes brought made way for the creation of decision support tools that facilitate the study and understanding of these markets. MASCEM – “Multiagent Simulator for Competitive Electricity Markets” arose in this context providing a framework for evaluating new rules, new behaviour, and new participants in deregulated electricity markets. MASCEM uses game theory, machine learning techniques, scenario analysis and optimisation techniques to model market agents and to provide them with decision-support. ALBidS is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This tool’s goal is to force the thinker to move outside his habitual thinking style. It was developed to be used mainly at meetings in order to “run better meetings, make faster decisions”. This dissertation presents a study about the applicability of the Six Thinking Hats technique in Decision Support Systems, particularly with the multiagent paradigm like the MASCEM simulator. As such this work’s proposal is of a new agent, a meta-learner based on STH technique that organizes several different ALBidS’ strategies and combines the distinct answers into a single one that, expectedly, out-performs any of them.
Resumo:
Ancillary services represent a good business opportunity that must be considered by market players. This paper presents a new methodology for ancillary services market dispatch. The method considers the bids submitted to the market and includes a market clearing mechanism based on deterministic optimization. An Artificial Neural Network is used for day-ahead prediction of Regulation Down, regulation-up, Spin Reserve and Non-Spin Reserve requirements. Two test cases based on California Independent System Operator data concerning dispatch of Regulation Down, Regulation Up, Spin Reserve and Non-Spin Reserve services are included in this paper to illustrate the application of the proposed method: (1) dispatch considering simple bids; (2) dispatch considering complex bids.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.
Resumo:
Traditional vertically integrated power utilities around the world have evolved from monopoly structures to open markets that promote competition among suppliers and provide consumers with a choice of services. Market forces drive the price of electricity and reduce the net cost through increased competition. Electricity can be traded in both organized markets or using forward bilateral contracts. This article focuses on bilateral contracts and describes some important features of an agent-based system for bilateral trading in competitive markets. Special attention is devoted to the negotiation process, demand response in bilateral contracting, and risk management. The article also presents a case study on forward bilateral contracting: a retailer agent and a customer agent negotiate a 24h-rate tariff. © 2014 IEEE.
Resumo:
The electricity industry throughout the world, which has long been dominated by vertically integrated utilities, has experienced major changes. Deregulation, unbundling, wholesale and retail wheeling, and real-time pricing were abstract concepts a few years ago. Today market forces drive the price of electricity and reduce the net cost through increased competition. As power markets continue to evolve, there is a growing need for advanced modeling approaches. This article addresses the challenge of maximizing the profit (or return) of power producers through the optimization of their share of customers. Power producers have fixed production marginal costs and decide the quantity of energy to sell in both day-ahead markets and a set of target clients, by negotiating bilateral contracts involving a three-rate tariff. Producers sell energy by considering the prices of a reference week and five different types of clients with specific load profiles. They analyze several tariffs and determine the best share of customers, i.e., the share that maximizes profit. © 2014 IEEE.
Resumo:
OBJECTIVE : To investigate the association between common mental disorders and intimate partner violence during pregnancy. METHODS : A cross sectional study was carried out with 1,120 pregnant women aged 18-49 years old, who were registered in the Family Health Program in the city of Recife, Northeastern Brazil, between 2005 and 2006. Common mental disorders were assessed using the Self-Reporting Questionnaire (SRQ-20). Intimate partner violence was defined as psychologically, physically and sexually abusive acts committed against women by their partners. Crude and adjusted odds ratios were estimated for the association studied utilizing logistic regression analysis. RESULTS : The most common form of partner violence was psychological. The prevalence of common mental disorders was 71.0% among women who reported all form of violence in pregnancy and 33.8% among those who did not report intimate partner violence. Common mental disorders were associated with psychological violence (OR 2.49, 95%CI 1.8;3.5), even without physical or sexual violence. When psychological violence was combined with physical or sexual violence, the risk of common mental disorders was even higher (OR 3.45; 95%CI 2.3;5.2). CONCLUSIONS : Being assaulted by someone with whom you are emotionally involved can trigger feelings of helplessness, low self-esteem and depression. The pregnancy probably increased women`s vulnerability to common mental disorders
Resumo:
Electricity markets are systems for effecting the purchase and sale of electricity using supply and demand to set energy prices. Two major market models are often distinguished: pools and bilateral contracts. Pool prices tend to change quickly and variations are usually highly unpredictable. In this way, market participants often enter into bilateral contracts to hedge against pool price volatility. This article addresses the challenge of optimizing the portfolio of clients managed by trader agents. Typically, traders buy energy in day-ahead markets and sell it to a set of target clients, by negotiating bilateral contracts involving three-rate tariffs. Traders sell energy by considering the prices of a reference week and five different types of clients. They analyze several tariffs and determine the best share of customers, i.e., the share that maximizes profit. © 2014 IEEE.
Resumo:
This paper presents a methodology to establish investment and trading strategies of a power generation company. These strategies are integrated in the ITEM-Game simulator in order to test their results when played against defined strategies used by other players. The developed strategies are focused on investment decisions, although trading strategies are also implemented to obtain base case results. Two cases are studied considering three players with the same trading strategy. In case 1, all players also have the same investment strategy driven by a market target share. In case 2, player 1 has an improved investment strategy with a target share twice of the target of players 2 and 3. Results put in evidence the influence of the CO2 and fuel prices in the company investment decision. It is also observed the influence of the budget constraint which might prevent the player to take the desired investment decision.
Resumo:
Traditional vertically integrated power utilities around the world have evolved from monopoly structures to open markets that promote competition among suppliers and provide consumers with a choice of services. Market forces drive the price of electricity and reduce the net cost through increased competition. Electricity can be traded in both organized markets or using forward bilateral contracts. This article focuses on bilateral contracts and describes some important features of an agent-based system for bilateral trading in competitive markets. Special attention is devoted to the negotiation process, demand response in bilateral contracting, and risk management. The article also presents a case study on forward bilateral contracting: a retailer agent and a customer agent negotiate a 24h-rate tariff. © 2014 IEEE.
Resumo:
The electricity industry throughout the world, which has long been dominated by vertically integrated utilities, has experienced major changes. Deregulation, unbundling, wholesale and retail wheeling, and real-time pricing were abstract concepts a few years ago. Today market forces drive the price of electricity and reduce the net cost through increased competition. As power markets continue to evolve, there is a growing need for advanced modeling approaches. This article addresses the challenge of maximizing the profit (or return) of power producers through the optimization of their share of customers. Power producers have fixed production marginal costs and decide the quantity of energy to sell in both day-ahead markets and a set of target clients, by negotiating bilateral contracts involving a three-rate tariff. Producers sell energy by considering the prices of a reference week and five different types of clients with specific load profiles. They analyze several tariffs and determine the best share of customers, i.e., the share that maximizes profit. © 2014 IEEE.