924 resultados para COLLOIDAL SILVER NANOPARTICLES


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: Currently, new methods to reduce biofilm formation on biomaterials are very studied, for example the use of silver nanoparticles, which were bactericidal. However, there are few studies investigating the benefits of these particles in dental restorative materials. Objective: This study aimed to compare in vitro the Streptococcus mutans biofilm formation on conventional light-cured composite resin with that on experimental light-cured composite resin, modified with silver nanoparticles. Material and methods: Discs were produced with either conventional resin (control group) and resin modified with different concentrations of silver nanoparticles, 0.1%, 0.3% and 0.6 % wt. (groups 1, 2 and 3, respectively). The samples were incubated in bacterial suspension (S. mutans) enriched with 20% sucrose to promote biofilm growth on the surfaces. Incubation times were 1, 4 and 7 days. After each period, adherent biofilms were disaggregated by ultrasound. Then, the numbers of viable cells recovered from the biofilms were counted through the serial dilution method. A morphological analysis of biofilm was also performed by Scanning Electron Microscopy. The data were subjected to Anova and Tukey’s test (α = 0.05). Results: The number of viable cells was statistically lower in groups 2 and 3 than in group 1 and control group, after the three incubation periods, without statistical difference between groups 2 and 3. The number of viable cells was statistically lower in group 1 than in control group, after 4 and 7 days of incubation. Conclusion: Resins modified with silver presented reduction of S. mutans biofilm on their surfaces, according to the conditions of this study.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Silver/alanine nanocomposites with varying mass percentage of silver have been produced. The size of the silver nanoparticles seems to drive the formation of the nanocomposite, yielding a homogeneous dispersion of the silver nanoparticles in the alanine matrix or flocs of silver nanoparticles segregated from the alanine crystals. The alanine crystalline orientation is modified according to the particle size of the silver nanoparticles. Concerning a mass percentage of silver below 0.1%, the nanocomposites are homogeneous, and there is no particle aggregation. As the mass percentage of silver is increased, the system becomes unstable, and there is particle flocculation with subsequent segregation of the alanine crystals. The nanocomposites have been analyzed by transmission electron microscopy (TEM), UV-Vis absorption spectroscopy, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy and they have been tested as radiation detectors by means of electron spin resonance (ESR) spectroscopy in order to detect the paramagnetic centers created by the radiation. In fact, the sensitivity of the radiation detectors is optimized in the case of systems containing small particles (30 nm) that are well dispersed in the alanine matrix. As the agglomeration increases, particle growth (up to 1.5 mu m) and segregation diminish the sensitivity. In conclusion, nanostructured materials can be used for optimization of alanine sensitivity, by taking into account the influence of the particles size of the silver nanoparticles on the detection properties of the alanine radiation detectors, thus contributing to the construction of small-sized detectors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present work reports on the thermo-optical study of germanate thin films doped with Au and Ag nanoparticles. Transmission Electron Microscopy images, UV-visible absorption and Micro-Raman scattering evidenced the presence of nanoparticles and the formation of collective excitations, the so called surface plasmons. Moreover, the effects of the metallic nanoparticles in the thermal properties of the films were observed. The thermal lens technique was proposed to evaluate the Thermal Diffusivity (D) of the samples. It furnishes superficial spatial resolution of about 100 mu m, so it is appropriate to study inhomogeneous samples. It is shown that D may change up to a factor 3 over the surface of a film because of the differences in the nanoparticles concentration distribution. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The stabilization of nanoparticles against their irreversible particle aggregation and oxidation reactions. is a requirement for further advancement in nanoparticle science and technology. For this reason the research aim on this topic focuses on the synthesis of various metal nanoparticles protected with monolayers containing different reactive head groups and functional tail groups. In this work cuprous bromide nanocrystals haave been synthetized with a diameter of about 20 nanometers according to a new sybthetic method adding dropwise ascorbic acid to a water solution of lithium bromide and cupric chloride under continuous stirring and nitrogen flux. Butane thiolate Cu protected nanoparticles have been synthetized according to three different syntesys methods. Their morphologies appear related to the physicochemical conditions during the synthesis and to the dispersing medium used to prepare the sample. Synthesis method II allows to obtain stable nanoparticles of 1-2 nm in size both isolated and forming clusters. Nanoparticle cluster formation was enhanced as water was used as dispersing medium probably due to the idrophobic nature of the butanethiolate layers coating the nanoparticle surface. Synthesis methods I and III lead to large unstable spherical nanoparticles with size ranging between 20 to 50 nm. These nanoparticles appeared in the TEM micrograph with the same morphology independently on the dispersing medium used in the sample preparation. The stability and dimensions of the copper nanoparticles appear inversely related. Using the same methods above described for the butanethiolate protected copper nanoparticles 4-methylbenzenethiol protected copper nanoparticles have been prepared. Diffractometric and spectroscopic data reveal that decomposition processes didn’t occur in both the 4-methylbenzenethiol copper protected nanoparticles precipitates from formic acid and from water in a period of time six month long. Se anticarcinogenic effects by multiple mechanisms have been extensively investigated and documented and Se is defined a genuine nutritional cancer-protecting element and a significant protective effect of Se against major forms of cancer. Furthermore phloroglucinol was found to possess cytoprotective effects against oxidative stress, thanks to reactive oxygen species (ROS) which are associated with cells and tissue damages and are the contributing factors for inflammation, aging, cancer, arteriosclerosis, hypertension and diabetes. The goal of our work has been to set up a new method to synthesize in mild conditions amorphous Se nanopaticles surface capped with phloroglucinol, which is used during synthesis as reducing agent to obtain stable Se nanoparticles in ethanol, performing the synergies offered by the specific anticarcinogenic properties of Se and the antioxiding ones of phloroalucinol. We have synthesized selenium nanoparticles protected by phenolic molecules chemically bonded to their surface. The phenol molecules coating the nanoparticles surfaces form low ordered arrays as can be seen from the wider shape of the absorptions in the FT-IR spectrum with respect to those appearing in that of crystalline phenol. On the other hand, metallic nanoparticles with unique optical properties, facile surface chemistry and appropriate size scale are generating much enthusiasm in nanomedicine. In fact Au nanoparticles has immense potential for both cancer diagnosis and therapy. Especially Au nanoparticles efficiently convert the strongly adsorbed light into localized heat, which can be exploited for the selective laser photothermal therapy of cancer. According to the about, metal nanoparticles-HA nanocrystals composites should have tremendous potential in novel methods for therapy of cancer. 11 mercaptoundecanoic surface protected Au4Ag1 nanoparticles adsorbed on nanometric apathyte crystals we have successfully prepared like an anticancer nanoparticles deliver system utilizing biomimetic hydroxyapatyte nanocrystals as deliver agents. Furthermore natural chrysotile, formed by densely packed bundles of multiwalled hollow nanotubes, is a mineral very suitable for nanowires preparation when their inner nanometer-sized cavity is filled with a proper material. Bundles of chrysotile nanotubes can then behave as host systems, where their large interchannel separation is actually expected to prevent the interaction between individual guest metallic nanoparticles and act as a confining barrier. Chrysotile nanotubes have been filled with molten metals such as Hg, Pb, Sn, semimetals, Bi, Te, Se, and with semiconductor materials such as InSb, CdSe, GaAs, and InP using both high-pressure techniques and metal-organic chemical vapor deposition. Under hydrothermal conditions chrysotile nanocrystals have been synthesized as a single phase and can be utilized as a very suitable for nanowires preparation filling their inner nanometer-sized cavity with metallic nanoparticles. In this research work we have synthesized and characterized Stoichiometric synthetic chrysotile nanotubes have been partially filled with bi and monometallic highly monodispersed nanoparticles with diameters ranging from 1,7 to 5,5 nm depending on the core composition (Au, Au4Ag1, Au1Ag4, Ag). In the case of 4 methylbenzenethiol protected silver nanoparticles, the filling was carried out by convection and capillarity effect at room temperature and pressure using a suitable organic solvent. We have obtained new interesting nanowires constituted of metallic nanoparticles filled in inorganic nanotubes with a inner cavity of 7 nm and an isolating wall with a thick ranging from 7 to 21 nm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Upgrade of biomass to valuable chemicals is a central topic in modern research due to the high availability and low price of this feedstock. For the difficulties in biomass treatment, different pathways are still under investigation. A promising way is in the photodegradation, because it can lead to greener transformation processes with the use of solar light as a renewable resource. The aim of my work was the research of a photocatalyst for the hydrolysis of cellobiose under visible irradiation. Cellobiose was selected because it is a model molecule for biomass depolymerisation studies. Different titania crystalline structures were studied to find the most active phase. Furthermore, to enhance the absorption of this semiconductor in the visible range, noble metal nanoparticles were immobilized on titania. Gold and silver were chosen because they present a Surface Plasmon Resonance band and they are active metals in several photocatalytic reactions. The immobilized catalysts were synthesized following different methods to optimize the synthetic steps and to achieve better performances. For the same purpose the alloying effect between gold and silver nanoparticles was examined.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plasmonen sind die kollektive resonante Anregung von Leitungselektronen. Vom Licht angeregternPlasmonen in subwellenlängen-grossen Nanopartikeln heissen Partikelplasmonen und sind vielversprechende Kandidaten für zukünftige Mikrosensoren wegen der starken Abhängigkeit der Resonanz an extern steuerbaren Parametern, wie die optischen Eigenschaften des umgebenden Mediums und die elektrische Ladung der Nanopartikel. Die extrem hohe Streue_zienz von Partikelplasmonen erlaubt eine einfache Beobachtung einzelner Nanopartikel in einem Mikroskop.rnDie Anforderung, schnell eine statistisch relevante Anzahl von Datenpunkten sammeln zu können,rnund die wachsende Bedeutung von plasmonischen (vor allem Gold-) Nanopartikeln für Anwendungenrnin der Medizin, hat nach der Entwicklung von automatisierten Mikroskopen gedrängt, die im bis dahin nur teilweise abgedeckten spektralen Fenster der biologischen Gewebe (biologisches Fenster) von 650 bis 900nm messen können. Ich stelle in dieser Arbeit das Plasmoscope vor, das genau unter Beobachtung der genannten Anforderungen entworfen wurde, in dem (1) ein einstellbarer Spalt in die Eingangsö_nung des Spektrometers, die mit der Bildebene des Mikroskops zusammenfällt, gesetzt wurde, und (2) einem Piezo Scantisch, der es ermöglicht, die Probe durch diesen schmalen Spalt abzurastern. Diese Verwirklichung vermeidet optische Elemente, die im nahen Infra-Rot absorbieren.rnMit dem Plasmoscope untersuche ich die plasmonische Sensitivität von Gold- und Silbernanostrnäbchen, d.h. die Plasmon-Resonanzverschiebung in Abhängigkeit mit der Änderung des umgebendenrnMediums. Die Sensitivität ist das Mass dafür, wie gut die Nanopartikeln Materialänderungenrnin ihrer Umgebung detektieren können, und damit ist es immens wichtig zu wissen, welche Parameterrndie Sensitivität beein_ussen. Ich zeige hier, dass Silbernanostäbchen eine höhere Sensitivität alsrnGoldnanostäbchen innerhalb des biologischen Fensters besitzen, und darüberhinaus, dass die Sensitivität mit der Dicke der Stäbchen wächst. Ich stelle eine theoretische Diskussion der Sensitivitätrnvor, indenti_ziere die Materialparameter, die die Sensitivität bein_ussen und leite die entsprechendenrnFormeln her. In einer weiteren Annäherung präsentiere ich experimentelle Daten, die die theoretische Erkenntnis unterstützen, dass für Sensitivitätsmessschemata, die auch die Linienbreite mitberücksichtigen, Goldnanostäbchen mit einem Aspektverhältnis von 3 bis 4 das optimalste Ergebnis liefern. Verlässliche Sensoren müssen eine robuste Wiederholbarkeit aufweisen, die ich mit Gold- und Silbernanostäbchen untersuche.rnDie Plasmonen-resonanzwellenlänge hängt von folgenden intrinsischen Materialparametern ab:rnElektrondichte, Hintergrundpolarisierbarkeit und Relaxationszeit. Basierend auf meinen experimentellen Ergebnissen zeige ich, dass Nanostäbchen aus Kupfer-Gold-Legierung im Vergleich zu ähnlich geformten Goldnanostäbchen eine rotverschobene Resonanz haben, und in welcher Weiserndie Linienbreite mit der stochimetrischen Zusammensetzung der legierten Nanopartikeln variiert.rnDie Abhängigkeit der Linienbreite von der Materialzusammensetzung wird auch anhand von silberbeschichteten und unbeschichteten Goldnanostäbchen untersucht.rnHalbleiternanopartikeln sind Kandidaten für e_ziente photovoltaische Einrichtungen. Die Energieumwandlung erfordert eine Ladungstrennung, die mit dem Plasmoscope experimentell vermessen wird, in dem ich die lichtinduzierte Wachstumsdynamik von Goldsphären auf Halbleiternanost äbchen in einer Goldionenlösung durch die Messung der gestreuten Intensität verfolge.rn

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plasmons in metal nanoparticles respond to changes in their local environment by a spectral shift in resonance. Here, the potential of plasmonic metal nanoparticles for label-free detection and observation of biological systems is presented. Comparing the material silver and gold concerning plasmonic sensitivity, silver nanoparticles exhibit a higher sensitivity but their chemical instability under light exposure limits general usage. A new approach combining results from optical dark-field microscopy and transmission electron microscopy allows localization and quantification of gold nanoparticles internalized into living cells. Nanorods exposing a negatively charged biocompatible polymer seem to be promising candidates to sense membrane fluctuations of adherent cells. Many small nanoparticles being specific sensing elements can build up a sensor for parallel analyte detection without need of labeling, which is easy to fabricate, re-usable, and has sensitivity down to nanomolar concentrations. Besides analyte detection, binding kinetics of various partner proteins interacting with one protein of interest are accessible in parallel. Gold nanoparticles are able to sense local oscillations in the surface density of proteins on a lipid bilayer, which could not be resolved so far. Studies on the fluorescently labeled system and the unlabeled system identify an influence of the label on the kinetics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neste trabalho, anticorpos anti-IgGh foram conjugados às nanopartículas de prata (NPAg) para detectar imunoglobulina G humana (IgGh). Um imunoensaio colorimétrico baseado na diminuição da agregação devido ao aumento da repulsão eletrostática após a interação ligante-alvo. A agregação é induzida pela variação da força iônica e uma mudança da coloração da suspensão coloidal de amarelo para vermelho pode ser observada. Na presença de IgGh, a agregação é inibida e a coloração da suspensão coloidal não se altera. As nanopartículas foram obtidas por meio de cinco procedimentos diferentes e caracterizadas por espectroscopia UV-Vis, espalhamento dinâmico de luz, difração de raios-X e microscopia eletrônica. Glicose e borohidreto de sódio foram utilizados como agentes redutores, enquanto CTAB e β-ciclodextrina foram utilizados como estabilizantes. Citrato de sódio foi utilizado como agente redutor e/ou estabilizante. Nanoesferas de carbono foram obtidas por tratamento hidrotérmico de uma solução aquosa de glicose e também foram utilizadas no preparo das nanopartículas. As nanopartículas foram funcionalizadas com ácido mercaptossuccínico e a conjugação ocorreu devido à interação entre grupos aminas e grupos carboxílicos ionizados, presentes no anticorpo e agente de acoplamento, respectivamente. A estabilidade dos conjugados e o efeito da adição de IgGh foram avaliados para todos os sistemas preparados. As nanopartículas de prata preparadas com borohidreto de sódio e citrato de sódio foram selecionadas para serem aplicadas no desenvolvimento do imunoensaio e as condições experimentais foram avaliadas. Em condições ótimas, observou-se uma correlação linear entre a diminuição da agregação do sistema (NPAg-anti-IgGh) e a concentração de IgGh (0 a 200 ng mL-1). O limite de detecção foi estimado em 25 ng mL-1. O método colorimétrico apresentou boa seletividade para a detecção de IgGh. Além disso, foi obtido um resultado satisfatório ao aplicar o método para determinação do fator IX de coagulação. Foi desenvolvido também um método para determinação de ATP baseado na agregação de nanopartículas de ouro. Aptâmeros foram utilizados como elemento de reconhecimento. Em princípio, o método pode ser aplicável à determinação de outros analitos, por meio da substituição do aptâmero utilizado neste trabalho pelo oligonucleotídeo específico para o alvo de interesse.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Colloidal gold nanoparticles were synthesized by different procedures affording suspensions with two different mean sizes (2 and 5 nm). Au catalysts were prepared by sol immobilization onto several silica frameworks with different 2D and 3D mesoporosities. The catalysts were tested in styrene oxidation reactions showing excellent efficiency and selectivity. The effect of nanoparticle size and mesoporous framework on the physical and catalytic properties of the final materials was studied. The most selective catalyst was prepared from the 5 nm Au nanoparticles and the more interconnected silica framework (3D mesoporosity).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

© The Royal Society of Chemistry 2016.Silver nanoparticles (AgNPs) are extensively used for their antibacterial properties in a diverse set of applications, ranging from the treatment of municipal wastewater to infection control in hospitals. However, the properties of AgNPs that render them conducive to bactericidal use in commerce may influence their potential toxicity to non-bacterial organisms. Based on the physiological and phylogenetic similarities between bacteria and mitochondria within eukaryotic cells, mitochondria are a likely intracellular target of AgNP toxicity. Mitochondria-specific outcomes of AgNP exposures have been identified in multiple cell types, including (but not limited to) loss of membrane potential, inhibition of enzymes involved in oxidative phosphorylation, and changes in calcium sequestration. However, the biological significance of mitochondrial toxicity due to AgNP exposure is currently incompletely understood. This review examines the existing evidence of mitochondrial toxicity induced by AgNP exposure, with discussions of the role of the physicochemical properties of the nanoparticles themselves in mitochondrial toxicity. The impacts of potentially differential cell- and tissue-specific significance of AgNP-induced mitochondrial dysfunction are also discussed.