945 resultados para CELL ADHESION MOLECULES
Resumo:
Exposition von Endothelzellen mit ionisierender Strahlung (IR) oder Behandlung mit inflammatorischen Zytokinen (z. B. TNFa) induziert über eine Rho-GTPasen abhängige NF-kB-Aktivierung die Expression verschiedener Zelladhäsionsmoleküle, u. a. auch von E-Selektin. E-Selektin vermittelt die Adhäsion von Tumorzellen (TC) an Endothelzellen und ist daher vermutlich an der Extravasation von zirkulierenden Tumorzellen beteiligt. HMG-CoA-Reduktase-Inhibitoren (Statine), welche eine breite klinische Anwendung als Lipidsenker erfahren, sind in der Lage, Rho-GTPasen und die durch sie vermittelten Signalwege zu hemmen. Daher sollten Statine wie Lovastatin auch Zell-Zell-Adhäsionsvorgänge beeinflussen. Die vorliegende Arbeit widmet sich den Mechanismen, mit denen IR und TNF in Endothel- und/oder Tumorzellen pro-adhäsive Faktoren induzieren können und ob diese Effekte durch Lovastatin beeinflussbar sind. Zu diesem Zweck wurde mittels eines ELISA-basierenden Zelladhäsions-Assays die Auswirkung von IR und TNF auf Zell-Zell-Kontakte zwischen humanen Tumorzellen (u. a. Kolonkarzinomzellen (HT29)) und humanen, venösen Nabelschnurendothelzellen (HUVEC) analysiert. Zudem wurden die Effekte einer Lovastatinvorbehandlung von TC und/oder HUVEC auf TC-HUVEC-Adhäsion untersucht. Des Weiteren wurden die Wirkungen des sLex-Mimetikums Glycyrrhizin und des Rac1-spezifischen „small-molecule“ Inhibitors NSC23766 auf TC-HUVEC-Adhäsion überprüft. Zusätzlich wurde die strahleninduzierbare mRNA-Expression von diversen Zelladhäsionsmolekülen, Metastasierungsfaktoren und DNA-Reparatur-Genen mittels qRT-PCR (Real-Time Analysen) quantitativ erfasst. Um die erhaltenen in vitro Ergebnisse auch in vivo zu bestätigen, untersuchten wir den Effekt einer Ganzkörperbestrahlung (TBI) von BALB/c-Mäusen auf die Expression von pro-adhäsiven Faktoren. Zur Analyse der Tumorzell-Extravasation wurden Tumorzellen in die laterale Schwanzvene immundefizienter Mäuse injiziert und anschließend eine Ganzkörperbestrahlung durchgeführt (4 Gy). Nach einer Wartezeit von 4 Wochen wurde ein erhöhtes Auftreten von Lungenmetastasen beobachtet, welches durch Vorbehandlung der Tiere mit Statinen, NSC23766 oder Glycyrrhizin blockiert werden konnte. Zusammenfassend konnte somit ein Einfluss von IR auf die Expression verschiedener Zelladhäsionsmoleküle in vitro und auf die Extravasation zirkulierender Tumorzellen in vivo festgestellt werden. Diese pro-metastatischen Strahleneffekte konnten durch pharmakologische Hemmung Rho-regulierter Signalwege abgeschwächt werden.
Resumo:
Poly(ethylene glycol) (PEG) is used in a broad range of applications due to its unique combination of properties and is approved use in formulations for body-care products, edibles and medicine. This thesis aims at the synthesis and characterization of novel heterofunctional PEG structures and the establishment of diethyl squarate as a suitable linker for the covalent attachment to proteins. Chapter 1 is an introduction on the properties and applications of PEG as well as the fascinating chemistry of squaric acid derivatives. In Chapter 1.1, the synthesis and properties of PEG are described, and the versatile applications of PEG derivatives in everyday products are emphasized with a focus on PEG-based pharmaceuticals and nonionic surfactants. This chapter is written in German, as it was published in the German Journal Chemie in unserer Zeit. Chapter 1.2 deals with PEGs major drawbacks, its non-biodegradability, which impedes parenteral administration of PEG conjugates with polyethers exceeding the renal excretion limit, although these would improve blood circulation times and passive tumor targeting. This section gives a comprehensive overview of the cleavable groups that have been implemented in the polyether backbone to tackle this issue as well as the synthetic strategies employed to accomplish this task. Chapter 1.3 briefly summarizes the chemical properties of alkyl squarates and the advantages in protein conjugation chemistry that can be taken from its use as a coupling agent. In Chapter 2, the application of diethyl squarate as a coupling agent in the PEGylation of proteins is illustrated. Chapter 2.1 describes the straightforward synthesis and characterization of squaric acid ethyl ester amido PEGs with terminal hydroxyl functions or methoxy groups. The reactivity and selectivity of theses activated PEGs are explored in kinetic studies on the reactions with different lysine and other amino acid derivatives, followed by 1H NMR spectroscopy. Further, the efficient attachment of the novel PEGs to a model protein, i.e., bovine serum albumin (BSA), demonstrates the usefulness of the new linker for the PEGylation with heterofunctional PEGs. In Chapter 2.3 initial studies on the biocompatibility of polyether/BSA conjugates synthesized by the squaric acid mediated PEGylation are presented. No cytotoxic effects on human umbilical vein endothelial cells exposed to various concentrations of the conjugates were observed in a WST-1 assay. A cell adhesion molecule - enzyme immunosorbent assay did not reveal the expression of E-selectin or ICAM-1, cell adhesion molecules involved in inflammation processes. The focus of Chapter 3 lies on the syntheses of novel heterofunctional PEG structures which are suitable candidates for the squaric acid mediated PEGylation and exhibit superior features compared to established PEGs applied in bioconjugation. Chapter 3.1 describes the synthetic route to well-defined, linear heterobifunctional PEGs carrying a single acid-sensitive moiety either at the initiation site or at a tunable position in the polyether backbone. A universal concept for the implementation of acetal moieties into initiators for the anionic ring-opening polymerization (AROP) of epoxides is presented and proven to grant access to the degradable PEG structures aimed at. The hydrolysis of the heterofunctional PEG with the acetal moiety at the initiating site is followed by 1H NMR spectroscopy in deuterium oxide at different pH. In an exploratory study, the same polymer is attached to BSA via the squarate acid coupling and subsequently cleaved from the conjugate under acidic conditions. Furthermore, the concept for the generation of acetal-modified AROP initiators is demonstrated to be suitable for cholesterol, and the respective amphiphilic cholesteryl-PEG is cleaved at lowered pH. In Chapter 3.2, the straightforward synthesis of α-amino ω2-dihydroxyl star-shaped three-arm PEGs is described. To assure a symmetric length of the hydroxyl-terminated PEG arms, a novel AROP initiator is presented, who’s primary and secondary hydroxyl groups are separated by an acetal moiety. Upon polymerization of ethylene oxide for these functionalities and subsequent cleavage of the acid-labile unit no difference in the degree of polymerization is seen for both polyether fragments.
Resumo:
Integrins and other cell adhesion molecules regulate numerous physiological and pathological mechanisms by mediating the interaction between cells and their extracellular environment. Although the significance of integrins in the evolution and progression of certain cancers is well recognized, their involvement in nonmalignant processes, such as organ fibrosis or inflammation, is only beginning to emerge. However, accumulating evidence points to an instrumental role of integrin-mediated signaling in a variety of chronic and acute noncancerous diseases, particularly of the liver.
Resumo:
The migration of polymorphonuclear granulocytes (PMN) into the brain parenchyma and release of their abundant proteases are considered the main causes of neuronal cell death and reperfusion injury following ischemia. Yet, therapies targeting PMN egress have been largely ineffective. To address this discrepancy we investigated the temporo-spatial localization of PMNs early after transient ischemia in a murine transient middle cerebral artery occlusion (tMCAO) model and human stroke specimens. Using specific markers that distinguish PMN (Ly6G) from monocytes/macrophages (Ly6C) and that define the cellular and basement membrane boundaries of the neurovascular unit (NVU), histology and confocal microscopy revealed that virtually no PMNs entered the infarcted CNS parenchyma. Regardless of tMCAO duration, PMNs were mainly restricted to luminal surfaces or perivascular spaces of cerebral vessels. Vascular PMN accumulation showed no spatial correlation with increased vessel permeability, enhanced expression of endothelial cell adhesion molecules, platelet aggregation or release of neutrophil extracellular traps. Live cell imaging studies confirmed that oxygen and glucose deprivation followed by reoxygenation fail to induce PMN migration across a brain endothelial monolayer under flow conditions in vitro. The absence of PMN infiltration in infarcted brain tissues was corroborated in 25 human stroke specimens collected at early time points after infarction. Our observations identify the NVU rather than the brain parenchyma as the site of PMN action after CNS ischemia and suggest reappraisal of targets for therapies to reduce reperfusion injury after stroke.
Resumo:
OBJECTIVES The application of an enamel matrix derivative (EMD) for regenerative periodontal surgery has been shown to promote formation of new cementum, periodontal ligament, and alveolar bone. In intrabony defects with a complicated anatomy, the combination of EMD with various bone grafting materials has resulted in additional clinical improvements, but the initial cellular response of osteoblasts coming in contact with these particles have not yet been fully elucidated. The objective of the present study was to evaluate the in vitro effects of EMD combined with a natural bone mineral (NBM) on a wide variety of genes, cytokines, and transcription factors and extracellular matrix proteins on primary human osteoblasts. MATERIAL AND METHODS Primary human osteoblasts were seeded on NBM particles pre-coated with versus without EMD and analyzed for gene differences using a human osteogenesis gene super-array (Applied Biosystems). Osteoblast-related genes include those transcribed during bone mineralization, ossification, bone metabolism, cell growth and differentiation, as well as gene products representing extracellular matrix molecules, transcription factors, and cell adhesion molecules. RESULTS EMD promoted gene expression of various osteoblast differentiation markers including a number of collagen types and isoforms, SMAD intracellular proteins, osteopontin, cadherin, alkaline phosphatase, and bone sialoprotein. EMD also upregulated a variety of growth factors including bone morphogenetic proteins, vascular endothelial growth factors, insulin-like growth factor, transforming growth factor, and their associated receptor proteins. CONCLUSION The results from the present study demonstrate that EMD is capable of activating a wide variety of genes, growth factors, and cytokines when pre-coated onto NBM particles. CLINICAL RELEVANCE The described in vitro effects of EMD on human primary osteoblasts provide further biologic support for the clinical application of a combination of EMD with NBM particles in periodontal and oral regenerative surgery.
Resumo:
Nonsyndromic cleft lip with or without cleft palate (nsCL/P, MIM 119530) is perhaps the most common major birth defect. Homozygous PVRL1 loss-of-function mutations result in an autosomal recessive CL/P syndrome, CLPED1, and a PVRL1 nonsense mutation is associated with sporadic nsCL/P in Northern Venezuela. To address the more general role of PVRL1 variation in risk of nsCL/P, we carried out mutation analysis of PVRL1 in North American and Australian nsCL/P cases and population-matched controls. We identified a total of 15 variants, 5 of which were seen in both populations and 1 of which, an in-frame insertion at Glu442, was more frequent in patients than in controls in both populations, though the difference was not statistically significant. Another variant, which is specific to the PVRL1 beta (HIgR) isoform, S447L, was marginally associated with nsCL/P in North American Caucasian patients, but not in Australian patients, and overall variants that affect the beta-isoform were significantly more frequent among North American patients. One Australian patient had a splice junction mutation of PVRL1. Our results suggest that PVRL1 may play a minor role in susceptibility to the occurrence of nsCL/P in some Caucasian populations, and that variation involving the beta (HIgR) isoform might have particular importance for risk of orofacial clefts. Nevertheless, these results underscore the need for studies that involve very large numbers when assessing the possible role of rare variants in risk of complex traits such as nsCL/P.
Resumo:
Galactosyltransferase (GalTase) is localized in the Golgi, where it functions in oligosaccharide synthesis, as well as on the cell surface where it serves as a cell adhesion molecule. GalTase-specific adhesions are functional in a number of important biological events, including F9 embryonal carcinoma (EC) cell adhesions. GalTase-based adhesions are formed by recognition and binding to terminal N-acetylglucosamine (GlcNAc) residues on its glycoprotein counterpart on adjacent cell surfaces. The object of this work has been to investigate the formation and function of GalTase-specific adhesions during F9 cell growth and differentiation. We initially investigated GalTase synthesis during differentiation and found that the increase in GalTase activity was specific for the Golgi compartment; surface GalTase levels remained constant during differentiation. These data indicated that the increase in cell adhesions expected with increased cell-matrix interaction in differentiated F9 cells is not the consequence of increased surface GalTase expression and, more interestingly, that the two pools of GalTase are under differential regulation. Synthesis and recognition of the consociate glycoprotein component was next investigated. Surface GalTase recognized several surface glycoproteins in a pattern that changes with differentiation. Uvomorulin, lysosome-associated membrane protein-1 (LAMP-1), and laminin were recognized by surface GalTase and are, therefore, potential components in GalTase-specific adhesions. Furthermore, these interactions were aberrant in an adhesion-defective F9 cell line that results, at least in part, from abnormal oligosaccharide synthesis. The function played by surface GalTase in growth and induction of differentiation was examined. Inhibition of surface GalTase function by a panel of reagents inhibited F9 cell growth. GalTase expression at both the transcription and protein levels were differentially regulated during the cell cycle, with surface expression greatest in the G1 phase. Disruption of GalTase adhesion by exposure to anti-GalTase antibodies during this period resulted in extension of the G2 phase, a result similar to that seen with agents known to inhibit growth and induce differentiation. Finally, other studies have suggested that a subset of cell adhesion molecules have the capability to induce differentiation in EC cells systems. We have determined in F9 cells that dissociating GalTase adhesion by galactosylation of and release of the consociate glycoproteins induces differentiation, as defined by increased laminin synthesis. The ability to induce differentiation by surface galactosylation was greatest in cells grown in cultures promoting cell-cell adhesions, relative to cultures with minimal cell-cell interactions. ^
Resumo:
Catenins were first characterized as linking the cytoplasmic domains of cadherin cell-cell adhesion molecules to the cortical actin cytoskeleton. In addition to their essential role in modulating cadherin adhesion, catenins have more recently been indicated to participate in cell and developmental signaling pathways. $\beta$-catenin, for example, associates directly with receptor tyrosine kinases and transcription factors such as LEF-1/TCF, and tranduces developmental signals within the Wnt pathway. $\beta$-catenin also appear to a role in regulating cell proliferation via its interaction with the tumor supressor protein APC. I have employed the yeast two-hybrid method to reveal that fascin, a bundler of actin filaments, binds to $\beta$-catenin's central Armadillo-repeat domain. The $\beta$-catenin-fascin interaction exists in cell lines as well as in animal brain tissues as revealed by immunoprecipitation analysis, and substantiated in vitro with purified proteins. Fascin additionally binds to plakoglobin, which contains a more divergent Armadillo-repeat domain. Fascin and E-cadherin utilize a similar binding-site within $\beta$-catenin, such that they form mutually exclusive complexes with $\beta$-catenin. Fascin and $\beta$-catenin co-localize at cell-cell borders and dynamic cell leading edges of epithelial and endothelial cells. Total immunoprecipitable b-catein has several isoforms, only the hyperphosphorylated isoform 1 associated with fascin. An increased $\beta$-catenin-fascin interaction was observed in HGF stimulated cells, and in Xenopus embryos injected with src kinase RNAs. The increased $\beta$-catenin association with fascin is correlated with increased levels of $\beta$-catenin phosphorylation. $\beta$-catenin, but not fascin, can be readily phosphorylated on tyrosine in vivo following src injection of embryos, or in vitro following v-src addition to purified protein components. These observations suggest a role of $\beta$-catenin phosphorylation in regulating its interaction with fascin, and src kinase may be an important regulator of the $\beta$-catenin-fascin association in vivo. The $\beta$-catenin-fascin interaction represents a novel catenin complex, that may conceivably regulate actin cytoskeletal structures, cell adhesion, and cellular motility, perhaps in a coordinate manner with its functions in cadherin and APC complexes. ^
Resumo:
NF-κB is a major transcription factor consisting of 50(p50)- and 65(p65)-kDa proteins that controls the expression of various genes, among which are those encoding cytokines, cell adhesion molecules, and inducible NO synthase (iNOS). After initial activation of NF-κB, which involves release and proteolysis of a bound inhibitor, essential cysteine residues are maintained in the active reduced state through the action of thioredoxin and thioredoxin reductase. In the present study, activation of NF-κB in human T cells and lung adenocarcinoma cells was induced by recombinant human tumor necrosis factor α or bacterial lipopolysaccharide. After lipopolysaccharide activation, nuclear extracts were treated with increasing concentrations of selenite, and the effects on DNA-binding activity of NF-κB were examined. Binding of NF-κB to nuclear responsive elements was decreased progressively by increasing selenite levels and, at 7 μM selenite, DNA-binding activity was completely inhibited. Selenite inhibition was reversed by addition of a dithiol, DTT. Proportional inhibition of iNOS activity as measured by decreased NO products in the medium (NO2− and NO3−) resulted from selenite addition to cell suspensions. This loss of iNOS activity was due to decreased synthesis of NO synthase protein. Selenium at low essential levels (nM) is required for synthesis of redox active selenoenzymes such as glutathione peroxidases and thioredoxin reductase, but in higher toxic levels (>5–10 μM) selenite can react with essential thiol groups on enzymes to form RS–Se–SR adducts with resultant inhibition of enzyme activity. Inhibition of NF-κB activity by selenite is presumed to be the result of adduct formation with the essential thiols of this transcription factor.
Resumo:
The unc-52 gene encodes the nematode homologue of mammalian perlecan, the major heparan sulfate proteoglycan of the extracellular matrix. This is a large complex protein with regions similar to low-density lipoprotein receptors, laminin, and neural cell adhesion molecules (NCAMs). In this study, we extend our earlier work and demonstrate that a number of complex isoforms of this protein are expressed through alternative splicing. We identified three major classes of perlecan isoforms: a short form lacking the NCAM region and the C-terminal agrin-like region; a medium form containing the NCAM region, but still lacking the agrin-like region; and a newly identified long form that contains all five domains present in mammalian perlecan. Using region-specific antibodies and unc-52 mutants, we reveal a complex spatial and temporal expression pattern for these UNC-52 isoforms. As well, using a series of mutations affecting different regions and thus different isoforms of UNC-52, we demonstrate that the medium NCAM-containing isoforms are sufficient for myofilament lattice assembly in developing nematode body-wall muscle. Neither short isoforms nor isoforms containing the C-terminal agrin-like region are essential for sarcomere assembly or muscle cell attachment, and their role in development remains unclear.
Resumo:
Extracellular proteins play an essential role in the formation, differentiation, and maintenance of multicellular organisms. Despite that, the systematic identification of genes encoding these proteins has not been possible. We describe here a highly efficient method to isolate genes encoding secreted and membrane-bound proteins by using a single-step selection in yeast. Application of this method, termed signal peptide selection, to various tissues yielded 559 clones that appear to encode known or novel extracellular proteins. These include members of the transforming growth factor and epidermal growth factor protein families, endocrine hormones, tyrosine kinase receptors, serine/threonine kinase receptors, seven transmembrane receptors, cell adhesion molecules, extracellular matrix proteins, plasma proteins, and ion channels. The eventual identification of most, or all, extracellular signaling molecules will advance our understanding of fundamental biological processes and our ability to intervene in disease states.
Resumo:
A "green beard" refers to a gene, or group of genes, that is able to recognize itself in other individuals and direct benefits to these individuals. Green-beard effects have been dismissed as implausible by authors who have implicitly assumed sophisticated mechanisms of perception and complex behavioral responses. However, many simple mechanisms for genes to "recognize" themselves exist at the maternal-fetal interface of viviparous organisms. Homophilic cell adhesion molecules, for example, are able to interact with copies of themselves on other cells. Thus, the necessary components of a green-beard effect -- feature, recognition, and response -- can be different aspects of the phenotype of a single gene. Other green-beard effects could involve coalitions of genes at closely linked loci. In fact, any form of epistasis between a locus expressed in a mother and a closely linked locus expressed in the fetus has the property of "self-recognition." Green-beard effects have many formal similarities to systems of meiotic drive and, like them, can be a source of intragenomic conflict.
Resumo:
Information obtained from studies of developmental and cellular processes in lower organisms is beginning to make significant contributions to the understanding of the pathogenesis of human birth defects, and it is now becoming possible to treat birth defects as inborn errors of development. Mutations in genes for transcription factors, receptors, cell adhesion molecules, intercellular junctions, molecules involved in signal transduction, growth factors, structural proteins, enzymes, and transporters have been identified in genetically caused human malformations and dysplasias. The identification of these mutations and the analysis of their developmental effects have been greatly facilitated by the existence of natural or engineered models in the mouse and even of related mutations in Drosophila, and in some instances a remarkable conservation of function in development has been observed, even between widely separated species.
Resumo:
Inflammation is a primary pathological process. The development of an inflammatory reaction involves the movement of white blood cells through the endothelial lining of blood vessels into tissues. This process of transendothelial cell migration of neutrophils has been shown to involve neutrophil beta 2 integrins (CD18) and endothelial cell platelet-endothelium cell adhesion molecules (PECAM-1; CD31). We now show that F(ab')2 fragments of the monoclonal antibody B6H12 against integrin-associated protein (IAP) blocks the transendothelial migration of neutrophils stimulated by an exogenous gradient of the chemokine interleukin 8 (IL-8; 60% inhibition), by the chemotactic peptide N-formyl-methionylleucylphenylalanine (FMLP; 76% inhibition), or by the activation of the endothelium by the cytokine tumor necrosis factor alpha (98% inhibition). The antibody has two mechanisms of action: on neutrophils it prevents the chemotactic response to IL-8 and FMLP, and on endothelium it prevents an unknown but IL-8-independent process. Blocking antibodies to IAP do not alter the expression of adhesion proteins or production of IL-8 by endothelial cells, and thus the inhibition of neutrophil transendothelial migration is selective. These data implicate IAP as the third molecule essential for neutrophil migration through endothelium into sites of inflammation.
Resumo:
Le sommeil est un besoin vital et le bon fonctionnement de l’organisme dépend de la quantité et de la qualité du sommeil. Le sommeil est régulé par deux processus : un processus circadien qui dépend de l’activité des noyaux suprachiasmatiques de l’hypothalamus et qui régule le moment durant lequel nous allons dormir, et un processus homéostatique qui dépend de l’activité neuronale et se reflète dans l’intensité du sommeil. En effet, le sommeil dépend de l’éveil qui le précède et plus l’éveil dure longtemps, plus le sommeil est profond tel que mesuré par des marqueurs électroencéphalographiques (EEG). Des études ont montré que le bon fonctionnement de ces deux processus régulateurs du sommeil dépend de la plasticité synaptique. Ainsi, les éléments synaptiques régulant la communication et la force synaptique sont d’importants candidats pour agir sur la physiologie de la régulation du sommeil. Les molécules d’adhésion cellulaire sont des acteurs clés dans les mécanismes de plasticité synaptique. Elles régulent l’activité et la maturation des synapses. Des études ont montré que leur absence engendre des conséquences similaires au manque de sommeil. Le but de ce projet de thèse est d’explorer l’effet de l’absence de deux familles de molécule d’adhésion cellulaire, les neuroligines et la famille des récepteur Eph et leur ligand les éphrines dans les processus régulateurs du sommeil. Notre hypothèse est que l’absence d’un des membres de ces deux familles de molécule affecte les mécanismes impliqués dans le processus homéostatique de régulation du sommeil. Afin de répondre à notre hypothèse, nous avons étudié d’une part l’activité EEG chez des souris mutantes n’exprimant pas Neuroligine‐1 (Nlgn1) ou le récepteur EphA4 en condition normale et après une privation de sommeil. D’autre part, nous avons mesuré les changements moléculaires ayant lieu dans ces deux modèles après privation de sommeil. Au niveau de l’activité EEG, nos résultats montrent que l’absence de Nlgn1 augmente la densité des ondes lentes en condition normale et augment l’amplitude et la pente des ondes lentes après privation de sommeil. Nlgn1 est nécessaire au fonctionnement normal de la synchronie corticale, notamment après une privation de sommeil, lui attribuant ainsi un rôle clé dans l’homéostasie du sommeil. Concernant le récepteur EphA4, son absence affecte la durée du sommeil paradoxal ainsi que l’activité sigma qui dépendent du processus circadien. Nos résultats suggèrent donc que ce récepteur est un élément important dans la régulation circadienne du sommeil. Les changements transcriptionnels en réponse à la privation de sommeil des souris n’exprimant pas Nlgn1 et EphA4 ne sont pas différents des souris sauvages. Toutefois, nous avons montré que la privation de sommeil affectait la distribution des marques épigénétiques sur le génome, tels que la méthylation et l’hydroxyméthylation, et que l’expression des molécules régulant ces changements est modifiée chez les souris mutantes pour le récepteur EphA4. Nos observations mettent en évidence que les molécules d’adhésion cellulaire, Nlgn1 et le récepteur EphA4, possèdent un rôle important dans les processus homéostatique et circadien du sommeil et contribuent de manière différente à la régulation du sommeil.