928 resultados para CATIONIC GEMINI SURFACTANTS
Guanidinium-cholesterol cationic lipids: efficient vectors for the transfection of eukaryotic cells.
Resumo:
Two cationic lipids, bis-guanidinium-spermidine-cholesterol (BGSC) and bis-guanidinium-trencholesterol (BGTC)-cholesterol derivatives bearing two guanidinium groups-have been synthesized and tested as artificial vectors for gene transfer. They combine the membrane compatible features of the cholesterol subunit and the favorable structural and high pKa features of the guanidinium functions for binding DNA via its phosphate groups. Reagent BGTC is very efficient for transfection into a variety of mammalian cell lines when used as a micellar solution. In addition, both BGTC and BGSC present also a high transfection activity when formulated as liposomes with the neutral phospholipid dioleoylphosphatidyl ethanolamine. These results reveal the usefulness of cholesterol derivatives bearing guanidinium groups for gene transfer.
Resumo:
Stable cationic lipid/DNA complexes were formed by solubilizing cationic liposomes with 1% octylglucoside and complexing a DNA plasmid with the lipid in the presence of detergent. Removal of the detergent by dialysis yielded a lipid/DNA suspension that was able to transfect tissue culture cells up to 90 days after formation with no loss in activity. Similar levels of gene transfer were obtained by mixing the cationic lipid in a liposome form with DNA just prior to cell addition. However, expression was completely lost 24 hr after mixing. The transfection efficiency of the stable complex in 15% fetal calf serum was 30% of that obtained in the absence of serum, whereas the transient complex was completely inactivated with 2% fetal calf serum. A 90-day stability study comparing various storage conditions showed that the stable complex could be stored frozen or as a suspension at 4 degrees C with no loss in transfection efficiency. Centrifugation of the stable complex produced a pellet that contained approximately 90% of the DNA and 10% of the lipid. Transfection of cells with the resuspended pellet and the supernatant showed that the majority of the transfection activity was in the pellet and all the toxicity was in the supernatant. Formation of a stable cationic lipid/DNA complex has produced a transfection vehicle that can be stored indefinitely, can be concentrated with no loss in transfection efficiency, and the toxicity levels can be greatly reduced when the active complex is isolated from the uncomplexed lipid.
Resumo:
Results presented here demonstrate that the thermodynamics of oligocation binding to polymeric and oligomeric DNA are not equivalent because of long-range electrostatic effects. At physiological cation concentrations (0.1-0.3 M) the binding of an oligolysine octacation KWK6-NH2 (+8 charge) to single-stranded poly(dT) is much stronger per site and significantly more salt concentration dependent than the binding of the same ligand to an oligonucleotide, dT(pdT)10 (-10 charge). These large differences are consistent with Poisson-Boltzmann calculations for a model that characterizes the charge distributions with key preaveraged structural parameters. Therefore, both the experimental and the theoretical results presented here show that the polyelectrolyte character of a polymeric nucleic acid makes a large contribution to both the magnitude and the salt concentration dependence of its binding interactions with simple oligocationic ligands.
Resumo:
A promising class of compounds for DNA transfection have been designed by conjugating various polyamines to bile-acid-based amphiphiles. Formulations containing these compounds were tested for their ability to facilitate the uptake of a beta-galactosidase reporter plasmid into COS-7 cells. Dioleoyl phosphatidyl ethanolamine (DOPE) formulations of some of the compounds were several times better than Lipofectin at promoting DNA uptake. The most active compounds contained the most hydrophilic bile acid components. The activity is clearly not related to affinity for DNA: the hydrophobic bile acid conjugates were found to form stable complexes with DNA at lower charge ratios than the hydrophilic conjugates. We suggest that the high activity of the best compounds is related to their facial amphiphilicity, which may confer an ability to destabilize membranes. The success of these unusual cationic transfection agents may inspire the design of even more effective gene delivery agents.
Seed and vascular expression of a high-affinity transporter for cationic amino acids in Arabidopsis.
Resumo:
In most plants amino acids represent the major transport form for organic nitrogen. A sensitive selection system in yeast mutants has allowed identification of a previously unidentified amino acid transporter in Arabidopsis. AAT1 encodes a hydrophobic membrane protein with 14 membrane-spanning regions and shares homologies with the ecotropic murine leukemia virus receptor, a bifunctional protein serving also as a cationic amino acid transporter in mammals. When expressed in yeast, AAT1 mediates high-affinity transport of basic amino acids, but to a lower extent also recognizes acidic and neutral amino acids. AAT1-mediated histidine transport is sensitive to protonophores and occurs against a concentration gradient, indicating that AAT1 may function as a proton symporter. AAT1 is specifically expressed in major veins of leaves and roots and in various floral tissues--i.e., and developing seeds.
Resumo:
Deoxyribonucleic guanidine is a potential antisense agent that is generated via the replacement of the negative phosphodiester linkages of DNA [--O--(PO2-)--O--] with positively-charged guanidinium (g) linkages [--NH--C(==NH2+)--NH--]. A pentameric thymidyl deoxyribonucleic guanidine molecule [d(Tg)4T-azido] has been shown to base pair specifically to poly(rA) with an unprecedented affinity. Both double and triple strands consisting of one and two equivalents of d(Tg)4T-azido paired with one equivalent of poly(rA) are indicated by thermal denaturation experiments. At an ionic strength of 0.22, the five bases of d(Tg)4T-azido are estimated to dissociate from a double helix with poly(rA) at > 100 degrees C! The effect of ionic strength on thermal denaturation is very pronounced, with stability greatest at low ionic strengths. The method of continuous variation indicates that there is an equilibrium complex with a molar ratio of d(Tg) to r(Ap) or d(Ap) of 2:1. Based on this evidence, models of the structures of d(Tg)9T-azido bound to r(Ap)9A are proposed.
Resumo:
The stabilization of reduced graphene oxide (RGO) sheets in aqueous dispersion using a wide range of surfactants of anionic, non-ionic and zwitterionic type has been investigated and compared under different conditions of pH, surfactant and RGO concentration, or sheet size. The observed differences in the performance of the surfactants were rationalized on the basis of their chemical structure (e.g., alkylic vs. aromatic hydrophobic tail or sulfonic vs. carboxylic polar head), thus providing a reference framework in the selection of appropriate surfactants for the processing of RGO suspensions towards particular purposes. RGO-surfactant composite paper-like films were also prepared through vacuum filtration of the corresponding mixed dispersions and their main characteristics were investigated. The composite paper-like films were also electrochemically characterized. Those prepared with two specific surfactants exhibited a high capacitance in relation to their surfactant-free counterpart.
Resumo:
Polyaniline/montmorillonite nanocomposites (PANI/M) were obtained by intercalation of aniline monomer into M modified with different cations and subsequent oxidative polymerization of the aniline. The modified-clay was prepared by ion exchange of sodium, copper and iron cations in the clay (Na–M, Cu–M and Fe–M respectively). Infrared spectroscopy confirms the electrostatic interaction between the oxidized PANI and the negatively charged surface of the clay. X-ray diffraction analysis provides structural information of the prepared materials. The nanocomposites were characterized by transmission electron microscopy and their thermal degradation was investigated by thermogravimetric analysis. The weight loss suggests that the PANI chains in the nanocomposites have higher thermal stability than pure PANI. The electrical conductivity of the nanocomposites increased between 12 and 24 times with respect to the pure M and this increase was dependent on the cation-modification. The electrochemical behavior of the polymers extracted from the nanocomposites was studied by cyclic voltammetry and a good electrochemical response was observed.
Resumo:
In this work, a sodium montmorillonite (Na+-Mt) was modified with two molecules simultaneously, an organic dye, methylene blue (MB), and ethyl hexadecyl dimethyl ammonium (EHDDMA). The synthesised organo-montmorillonites (OMt) combining different proportions of the two molecules were thoroughly characterised and mixed with ethylene vinyl acetate copolymer (EVA) in order to check the ability of these OMt as pigments and reinforcing additives. The synthesised OMt combining both surfactants, MB and EHDDMA, present higher interlayer distances than those with only MB, which were employed in previous works as nanopigments. When these OMt were incorporated in the EVA matrix, the obtained clay polymer nanocomposites (CPN) showed a high exfoliation degree of the OMt in the polymer, in such a way that at 80% of the cationic exchange capacity (CEC) of the Mt exchanged with EHDDMA, most of the OMt was exfoliated. Moreover, all the obtained CPN showed an increase in the Young's Moduli compared to the EVA reference, and especially those containing higher amounts of MB. The thermal stability of the CPN also increases with the MB content, compared to other CPN including conventional surfactants. The hiding power and colouring power achieved in the CPN are higher even with a much lower load of MB when EHDDMA is exchanged in the Mt.
Resumo:
Surfactant-templating is one of the most versatile and useful techniques to implement mesoporous systems into solid materials. Various strategies based on various interactions between surfactants and solid precursors have been explored to produce new structures. Zeolites are invaluable as size- and shape-selective solid acid catalysts. Nevertheless, their micropores impose limitations on the mass transport of bulky feed and/or product molecules. Many studies have attempted to address this by utilizing surfactant-assisting technology to alleviate the diffusion constraints. However, most efforts have failed due to micro/mesopore phase separation. Recently, a new technique combining the uses of cationic surfactants and mild basic solutions was introduced to synthesise mesostructured zeolites. These materials sustain the unique characteristics of zeolites (i.e., strong acidity, crystallinity, microporosity, and hydrothermal stability), including tunable mesopore sizes and degrees of mesoporosity. The mesostructured zeolites are now commercially available through Rive Technology, and show superior performance in VGO cracking. This feature article provides an overview of recent explorations in the introduction of mesoporosity into zeolites using surfactant-templating techniques. Various porous materials, preparation methods, physical and catalytic properties of mesostructured zeolites will be discussed.
Resumo:
La génération des fréquences somme (SFG), une technique spectroscopique spécifique aux interfaces, a été utilisée pour caractériser les changements de la structure macromoléculaire du surfactant cationique chlorure de dodécyltriméthylammonium (DTAC) à l’interface silice/eau dans une plage de pH variant entre 3 et 11. Les conditions expérimentales ont été choisies pour imiter les conditions les plus communes trouvées pendant les opérations de récupération assistée du pétrole. Particulièrement, la silice a été étudiée, car elle est un des composantes des surfaces minérales des réservoirs de grès, et l’adsorption du surfactant a été étudiée avec une force ionique pertinente pour les fluides de la fracturation hydraulique. Les spectres SFG ont présenté des pics détectables avec une amplitude croissante dans la région des étirements des groupes méthylène et méthyle lorsque le pH est diminué jusqu’à 3 ou augmenté jusqu’à 11, ce qui suggère des changements de la structure des agrégats de surfactant à l’interface silice/eau à une concentration de DTAC au-delà de la concentration micellaire critique. De plus, des changements dans l’intensité SFG ont été observés pour le spectre de l’eau quand la concentration de DTAC augmente de 0,2 à 50 mM dans les conditions acide, neutre et alcaline. À pH 3, près du point de charge zéro de la surface de silice, l’excès de charge positive en raison de l’adsorption du surfactant cationique crée un champ électrostatique qui oriente les molécules d’eau à l’interface. À pH 7 et 11, ce qui sont des valeurs au-dessus du point de charge zéro de la surface de silice, le champ électrostatique négatif à l’interface silice/eau diminue par un ordre de grandeur avec l’adsorption du surfactant comme résultat de la compensation de la charge négative à la surface par la charge positive du DTAC. Les résultats SFG ont été corrélés avec des mesures de l’angle de contact et de la tension interfaciale à pH 3, 7 et 11.
Resumo:
La génération des fréquences somme (SFG), une technique spectroscopique spécifique aux interfaces, a été utilisée pour caractériser les changements de la structure macromoléculaire du surfactant cationique chlorure de dodécyltriméthylammonium (DTAC) à l’interface silice/eau dans une plage de pH variant entre 3 et 11. Les conditions expérimentales ont été choisies pour imiter les conditions les plus communes trouvées pendant les opérations de récupération assistée du pétrole. Particulièrement, la silice a été étudiée, car elle est un des composantes des surfaces minérales des réservoirs de grès, et l’adsorption du surfactant a été étudiée avec une force ionique pertinente pour les fluides de la fracturation hydraulique. Les spectres SFG ont présenté des pics détectables avec une amplitude croissante dans la région des étirements des groupes méthylène et méthyle lorsque le pH est diminué jusqu’à 3 ou augmenté jusqu’à 11, ce qui suggère des changements de la structure des agrégats de surfactant à l’interface silice/eau à une concentration de DTAC au-delà de la concentration micellaire critique. De plus, des changements dans l’intensité SFG ont été observés pour le spectre de l’eau quand la concentration de DTAC augmente de 0,2 à 50 mM dans les conditions acide, neutre et alcaline. À pH 3, près du point de charge zéro de la surface de silice, l’excès de charge positive en raison de l’adsorption du surfactant cationique crée un champ électrostatique qui oriente les molécules d’eau à l’interface. À pH 7 et 11, ce qui sont des valeurs au-dessus du point de charge zéro de la surface de silice, le champ électrostatique négatif à l’interface silice/eau diminue par un ordre de grandeur avec l’adsorption du surfactant comme résultat de la compensation de la charge négative à la surface par la charge positive du DTAC. Les résultats SFG ont été corrélés avec des mesures de l’angle de contact et de la tension interfaciale à pH 3, 7 et 11.