958 resultados para CATALYTIC ACTIVITY CONCENTRATIONS
Resumo:
A novel trypsin inhibitor termed BATI was purified to homogeneity from the skin extracts of toad Bufo andrewsi by successive ion-exchange, gel-filtration and reverse-phase chromatography. BATI is basic single chain glycoprotein, with apparent molecular weight of 22 kDa in SDS-PAGE. BATI is a thermal stable competitive inhibitor and effectively inhibits trypsin's catalytic activity on peptide substrate with the inhibitor constant (K-i) value of 14 nM and shows no inhibitory effect on chymotrypsin, thrombin and elastase. The N-terminal sequence of BATI is EKDSITD, which shows no similarity with other known trypsin inhibitors. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Highly sensitive biosensor for detection of acetylcholine (ACh) and competitive acetylcholinesterase (AChE) inhibitor, eserine, is investigated. Peculiar microelectronic configuration of an ion-sensitive field-effect transistor (ISFET) in addition to a right choice of the pH-transducing nanolayers allows recording a response of the enzyme-modified ISFET (EnFET) to a wide range of ACh concentrations. We demonstrate a remarkable improvement of at least three orders of magnitude in dose response to ACh. Described bioelectronic system reveals clear response, when the catalytic activity of the immobilized AChE is inhibited in a reversible manner by eserine, competitive inhibitor of AChE. ©2007 IEEE.
Resumo:
We evaluated the feasibility of microencapsulating dissolved alkaline phosphatase of a water body into reverse micelle systems prepared by hexadecyltrimethylammonium bromide as a surfactant in cyclohexane and 1-butanol as co-surfactant. The dissolved alkaline phosphatase activity within the micelle was described, including its kinetic parameters and the effects of pH and temperature on catalytic activity in surface, overlying and interstitial water of Lake Donghu. We found the similarities on the behavior of dissolved alkaline phosphatase of surface and interstitial water in reverse micelles, which was distinctly different from its behavior in the overlying water. This difference likely reflected the different origins of the dissolved alkaline phosphatase in the vertical profile of the lake. This system provides a novel tool with which to study the diversity and ecological significance of extracellular enzymes in aquatic environments.
Resumo:
MCM-22 zeolite with mid-strong acidity and openings of 10-membered ring channels may obtain a high catalytic activity and selectivity for alkylation of toluene with methanol. The acidic sites, for catalyzing alkylation of toluene with methanol, are weaker than that for catalyzing toluene disproportionation. Compared with silicon as a modifier, modification of MCM-22 with La(NO3)(3) is a promising way to improve the catalytic selectivity of para-xylene. In addition, the experimental results also clearly indicate the characteristics of MCM-22 structure consisting of large intracrystalline cages, some of which may locate on surface of MCM-22. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Direct synthesis of alcohols from CO and H2O was investigated using TiO2 catalyst. MeOH (about 24 mg g(-1) h(-1)) and EtOH (about 8 mg g(-1) h(-1)) could be produced under the reaction conditions of T= 573 K, P= 0.5 MPa, CO flow rate of 30 ml min(-1) and CO/H2O = 3/2 during the period of 12 to 44 h time-on-stream. Compared with PbO, TiO2 could preserve stable catalytic activity during a long time of reaction. For the same catalyst TiO2, the reaction performance of alkali carbonates increased with their solubility (K2CO3>Na2CO3>Li2CO3). The corresponding catalytic activity was found to increase with the alkalescence of solvent. The formation mechanism of alcohols was proposed as well. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Silver impregnated H-ZSM-5 zeolite catalysts with silver loading from 3 to 15 wt.% were investigated for the selective catalytic reduction (SCR) of NOx with CH4 in the excess of oxygen. X-ray diffraction (XRD) and UV-Vis measurements established the structure of silver catalysts. A relationship between the structure of silver catalysts and their catalytic functions for the SCR of NOx by CH4 was clarified. The NO conversion to N-2 showed a S-shape dependence on the increase of Ag loading. No linear dependence of catalytic activity on the amount of silver ions in the zeolite cation sites was observed. Contrastively, the activity was significantly enhanced by the nano-sized silver particles formed on the higher Ag loading samples (greater than or equal to7 wt.%). Temperature programmed desorption (TPD) and temperature programmed reduction (TPR) studies showed that nano-silver particles provided much stronger adsorption centers for active intermediates NO3-(s) on which adsorbed NO3-(s) could be effectively reduced by the activated methane. Silver ions in the zeolite cation sites might catalyze the reaction through activation of CH4 at lower temperatures. Activated CH4 reacted with NO3-(s) adsorbed on nano-silver particles to produce N-2 and CO2. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Partial oxidation of n-heptane (POH) for hydrogen generation was studied over several catalysts between 700 and 850degreesC. Modified Ni-based/gamma-Al2O3 catalyst exhibited not only good catalytic activity but also good carbon deposition resistance ability. Under the modified reaction conditions, 100% n-heptane conversion and 93% hydrogen selectivity can be obtained.
Resumo:
Catalytic activity of Pt catalysts for soot oxidation was studied using temperature programmed reactions. The activity of Pt loaded over TiO2-SiO2 (Pt/TiO2-SiO2) showed higher activity than other Pt/MOx systems (MOx = TiO2, ZrO2, SiO2, Al2O3. TiO2-ZrO2. TiO2-Al2O3, ZrO2-SiO2, ZrO2-Al2O3, SiO2-Al2O3). The activity was highest when the molar ratio of TiO2/(TiO2 + SiO2) ranged from 0.4 to 0.7. The effect of pretreatment with a gas containing low SO2 concentrations on the activity was compared for Pt/SiO2, Pt/TiO2 and Pt/TiO2-SiO2. In the case of Pt/TiO2-SiO2, the activity was markedly promoted by the pretreatment whereas no variation in the activity was observed for Pt/SiO2. The difference in the behavior towards the SO, pretreatment was attributed to property difference in the supports for sulfate accumulation. The high activity of Pt/TiO2-SiO2 was also confirmed under practical conditions with a diesel engine exhaust using a catalyst-supported diesel particulate filter (DPF). (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Catalytic degradation of organic dye molecules has attracted extensive attention due to their high toxicity to water resources. In this paper, we propose a novel method for the fabrication of uniform silver-coated ZnO nanowire arrays. The degradation of typical dye molecule rhodamine 6G (R6G), as an example, is investigated in the presence of the as-prepared silver-coated ZnO nanowire arrays. The experimental results show that such composite nanostructures exhibit high catalytic activity, and the reaction follows pseudo-first-order kinetics. Furthermore, these nanowire arrays are desirable SERS substrates for monitoring the catalytic degradation of dye molecules. Compared with traditional UV-visible spectroscopy, SERS technology can reflect more truly the catalytic degradation process occurring on the surface of the catalysts.
Resumo:
Non-ionic surfactant Triton X-100 was used as a stabilizer to prepare PtRu/C catalysts for methanol oxidation reaction (MOR). The cyclic voltammogram was used to investigate the catalytic activity for MOR of different PtRu/C catalysts. TG-DTA, EDX, XRD, XPS and TEM were Used to characterize the composition, structure and morphology of the as-prepared PtRu/C catalysts. It is found that the heat treatment plays a crucial role in the particles size, particles distribution of the PtRu/C catalysts and the oxidation state of platinum. The results show that 350 degrees C is an optimum heat treatment temperature. The as-synthesized catalyst heat-treated at this temperature exhibits the best catalytic performance for MOR.
Resumo:
Ti-Zr-Co alloys have been fabricated and characterized, and their catalytic performance was discussed for the oxidation of cyclohexane with oxygen under solvent-free condition. The icosahedral quasicrystalline phase (I-phase)-forming ability of Ti-Zr-Co alloys with different compositions was discussed, and it was confirmed that I-phase could be formed as a dominating phase at the Ti-rich composition region from Ti53Zr27Co20 to Ti75Zr5Co20 in as-cast alloys. The composition and microstructure of Ti-Zr-Co alloys present crucial influences on its catalytic activity and selectivity in the oxidation of cyclohexane. The influences of some reaction parameters such as temperature, reaction time, and catalyst amounts were also investigated. Ti70Zr10Co20 alloy containing quasicrystal microstructure showed good catalytic performance with a 6.8% conversion of cyclohexane and 90.4% selectivity of cyclohexanol and cyclohexanone. It behaves as an efficient heterogeneous catalyst for the oxidation of cyclohexane and could be recycled five times without loss in activity and selectivity.
Resumo:
A green synthetic strategy to prepare monodisperse Pt nanoparticles was reported. Aminodextran acted as the reductive and protective agents, and Pt nanoparticles were characterized by UV/vis spectroscopy (UV-vis), Pt nanoparticles were conveniently obtained at one step. transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). By changing the initial molar ratio of arninodextran to platinum precursor, Pt nanoparticles with different size were obtained. Amino groups of aminodextran could absorb on Pt nanoparticles surfaces and serve as a very good stabilizer. However, dextran without amino groups could not effectively stabilize Pt nanoparticles and aggregation of Pt nanoparticles were obtained. Catalytic activity of these Pt nanoparticles for the electron-transfer reaction between hexacyanoferrate (III) ions and thiosulfate ions was also studied, and they showed good catalytic efficiency.
Resumo:
The aim of this work is to study the effect of Sr substitution on the redox properties and catalytic activity of La2-xSrxNiO4 (x = 0.0-1.2) for NO decomposition. Results suggest that the x = 0.6 sample shows the highest activity. The characterization (TPD, TPR, etc.) of samples indicates that the x = 0.6 sample possesses suitable abilities in both oxidation and reduction, which facilitates the proceeding of oxygen desorption and NO adsorption. At temperature below 700 degrees C, the oxygen desorption is difficult, and is the rate-determining step of NO decomposition. With the increase of reaction temperature (T > 700 degrees C), the oxygen desorption is favorable and, the active adsorption of NO on the active site (NO + V-o + Ni2+ -> NO--Ni3+) turns out to be the rate-determining step. The existence of oxygen vacancy is the prerequisite condition for NO decomposition, but its quantity does not relate much to the activity.
Resumo:
Well-dispersed palladium nanoparticles in mesoporous SBA- 15 SiO2 were prepared in a facile one-step approach during sol-gel route under reductive atmosphere. X-ray diffraction (XRD) results indicate that as-synthesized nanocomposites basically remain ordered two-dimensional hexagonal mesostructure while transmission electron microscopy (TEM) study exhibits a well dispersion of palladium nanoparticles within the mesoporous SBA-15 channels. The size of Pd nanoparticles is approximately in the range of 5-10nm. However, the resulting nanocomposites exhibit a highly catalytic activity and reused ability at least after five recycles without ligand in air for both the Suzuki and Heck coupling reactions.
Resumo:
In 0.05 mol/L phosphate buffer solution (pH 7.0), carbon nanotubes modified electrode exhibits rapid response, strong catalytic activity with high stability toward the electrochemical oxidation of catechol. The electrochemical behavior of catechol on both the multi-walled and single-walled carbon nanotubes modified electrode was investigated. The experimental conditions, such as pH of the solution and scan rate were optimized. The currents (measured by constant potential amperometry) increase linearly with the concentrations of catechol in the range of 2.0 x 10(-5) - 1.2 x 10(-3) mol/L. Moreover, at the multi-walled carbon nanotubes modified electrode the electrochemical responses of catechol and ascorbic acid can be separated clearly.