1000 resultados para CARBON-DIOXIDE LASER


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The method of preparation of a novel plastic thin-film sensor that incorporates the fluorescent dye 8-hydroxypryrene-1,3,6-trisulfonic acid is described; the shelf-life of the film is over 6 months. The results of a study on the equilibrium response of the sensor towards different levels of gaseous CO2 fit a model there is a 1 + 1 equilibrium reaction between the deprotonated form of the dye (present in the film as an ion pair) and the concentration of gaseous CO2 present. In contrast to the situation in aqueous solution, in the plastic film the pK(a) of the excited form of the dye appears close to that of the ground-state form, although this does not interfere with its use as 8 CO2 sensor. The 0 to 90% response and recovery times of the film when exposed to an alternating atmosphere of air and 5% CO2 are typically 4.3 and 7.1 s, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of photomineralization of 4-chlorophenol (4-CP) sensitized by Degussa P25 TiO2 in O2-saturated solution is studied as a function of the following different experimental parameters: pH, [TiO2], percentage O2 [O2], [4-CP], T, I, lambda and [KNO3]. At pH 2 and T=30-degrees-C the initial relative rate of CO2 photogeneration R(CO2) conforms to a Langmuir-Hinshelwood-type kinetic scheme and the relationship between R(CO2) and the various experimental parameters may be summarized as follows: R(CO2) = gammaK(O2)[O2](I(a))(theta)K(4-CP]0/(1 + K(O2])(1 + K(4-CP)[4-CP]0) where gamma is a proportionality constant, K(O2) = 0.044 +/- 0.005[O2]-1, theta = 0.74 +/- 0.05 and K(4-CP) = (29 +/- 3) x 10(3) dm3 mol-1. The overall activation energy for this photosystem was determined as 16 +/- 2 kJ mol-1. This work forms part of an overall characterization study in which it is proposed that the 4-CP-TiO2-O2 photosystem is adopted as a standard test system for incorporation into all future semiconductor-sensitized photomineralization studies in order to facilitate comparisons between the results of the different studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The equilibrium responses of three new colorimetric plastic film sensors for CO2 as a function of % CO2 and temperature are described. The results fit a model in which there is a 1:1 equilibrium reaction between the deprotonated form of the dye (present in the film as an ion pair) and CO2. The 0-50% and 0-90% response and recovery times of each of these films when exposed to an alternating atmosphere of air and 5% CO2 are determined and in two cases are typically less than 3 s. The shelf life of the films is long (many months); however, prolonged use of the films leads to the permanent generation of the protonated form of the dye over a period of 20-100 h. A possible cause of this latter effect is discussed.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental values for the carbon dioxide solubility in eight pure electrolyte solvents for lithium ion batteries – such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), ?-butyrolactone (?BL), ethyl acetate (EA) and methyl propionate (MP) – are reported as a function of temperature from (283 to 353) K and atmospheric pressure. Based on experimental solubility data, the Henry’s law constant of the carbon dioxide in these solvents was then deduced and compared with reported values from the literature, as well as with those predicted by using COSMO-RS methodology within COSMOthermX software and those calculated by the Peng–Robinson equation of state implemented into Aspen plus. From this work, it appears that the CO2 solubility is higher in linear carbonates (such as DMC, EMC, DEC) than in cyclic ones (EC, PC, ?BL). Furthermore, the highest CO2 solubility was obtained in MP and EA solvents, which are comparable to the solubility values reported in classical ionicliquids. The precision and accuracy of the experimental values, considered as the per cent of the relative average absolute deviations of the Henry’s law constants from appropriate smoothing equations and from literature values, are close to (1% and 15%), respectively. From the variation of the Henry’s law constants with temperature, the partial molar thermodynamic functions of dissolution such as the standard Gibbs free energy, the enthalpy, and the entropy are calculated, as well as the mixing enthalpy of the solvent with CO2 in its hypothetical liquid state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental values for the solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon and carbon monoxide in 1-butyl-3- methylimidazolium tetrafluoroborate, [bmim][BF4] - a room temperature ionic liquid - are reported as a function of temperature between 283 K and 343 K and at pressures close to atmospheric. Carbon dioxide is the most soluble gas with mole fraction solubilities of the order of 10-2. Ethane and methane are one order of magnitude more soluble than the other five gases that have mole fraction solubilities of the order of 10-4. Hydrogen is the less soluble of the gaseous solutes studied. From the variation of solubility, expressed as Henry's law constants, with temperature, the partial molar thermodynamic functions of solvation such as the standard Gibbs energy, the enthalpy, and the entropy are calculated. The precision of the experimental data, considered as the average absolute deviation of the Henry's law constants from appropriate smoothing equations is of 1%. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to study the influence of changing the cation of the ionic liquid (IL) on gas solubility. For this purpose, the low-pressure solubility of carbon dioxide and of ethane in three ILs based on the bis{(trifluoromethyl)sulfonyl}imide anion ([NTf2](-)) was determined experimentally. Solubility data is reported for 1-ethyl-3-methylimidazolium ([C(1)C(2)Im](+)), 1-butyl-1-methylpyrrolidinium ([C(1)C(4)pyrr](+)) and propylcholinium ([N1132-OH](+)) bis{(trifluoromethyl)sulfonyl}imide ILs between 300 and 345 K. These data are precise to within +/- 1% and accurate to within +/- 5%. In these ILs, carbon dioxide (mole fraction solubility between 1 and 3 x 10(-2), molarity between 0.03 and 0.1 mol L-1) is one order of magnitude more soluble than ethane. The effect of changing the cation is small but significant. Changing the cation has a similar effect on both gases even if the differences are more pronounced in the case of ethane with the order of solubility [C(1)C(4)pyrr][NTf2] > [C(1)C(2)Im][NTf2] > [N1132-OH][NTf2]. For all the systems, the solubility decreases with temperature corresponding to exothermic processes of solvation and negative enthalpies and entropies of solvation were calculated. The properties of solvation of the two gases in [C(1)C(4)pyrr][NTf2] do not vary significantly with temperature while important variations are depicted for both gases in [C(1)C(2)Im][NTf2]. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Densities and viscosities of the ionic liquid 1-butyl-3-methylimidazolium octylsulfate, [C4C1Im][C8SO4] were measured as a function of temperature between 313 K and 395 K. Solubilities of hydrogen and carbon dioxide were determined, between 283 K and 343 K, and at pressures close to atmospheric in [C4C1Im][C 8SO4] and in another ionic liquid based on the alkylsulfate anion-1-ethyl-3-methylimidazolium ethylsulfate, [C 2C1Im][C2SO4]. Density and viscosity were measured using a vibrating tube densimeter from Anton Paar and a rheometer from Rheometrics Scientific with accuracies of 10-3 g cm -3 and 1%, respectively. Solubilities were obtained using an isochoric saturation technique and, from the variation of solubility with temperature, the partial molar thermodynamic functions of solvation, such as the standard Gibbs energy, the enthalpy, and the entropy, are calculated. The precision of the experimental data, considered as the average absolute deviation of the Henry's law constants from appropriate smoothing equations, is better than ±1%. © The Royal Society of Chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present in this study the effect of nature and concentration of lithium salt, such as the lithium hexafluorophosphate, LiPF6; lithium tris(pentafluoroethane)-trifluorurophosphate LiFAP; lithium bis(trifluoromethylsulfonyl)imide, LiTFSI, on the CO2 solubility in four electrolytes for lithium ion batteries based on pure solvent that include ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), as well as, in the EC:DMC, EC:EMC and EC:DEC (50:50) wt.% binary mixtures as a function of temperature from (283 to 353) K and atmospheric pressure. Based on experimental solubility values, the Henry’s law constant of the carbon dioxide in these solutions with the presence or absence of lithium salt was then deduced and compared with reported values from the literature, as well as with those predicted by using COSMO-RS methodology within COSMOThermX software. From this study, it appears that the addition of 1 mol · dm-3 LiPF6 salt in alkylcarbonate solvents decreases their CO2 capture capacity. By using the same experimental conditions, an opposite CO2 solubility trend was generally observed in the case of the addition of LiFAP or LiTFSI salts in these solutions. Additionally, in all solutions investigated during this work, the CO2 solubility is greater in electrolytes containing the LiFAP salt, followed by those based on the LiTFSI case. The precision and accuracy of the experimental data reported therein, which are close to (1 and 15)%, respectively. From the variation of the Henry’s law constant with temperature, the partial molar thermodynamic functions of dissolution such as the standard Gibbs energy, the enthalpy, and the entropy, as well as the mixing enthalpy of the solvent with CO2 in its hypothetical liquid state were calculated. Finally, a quantitative analysis of the CO2 solubility evolution was carried out in the EC:DMC (50:50) wt.% binary mixture as the function of the LiPF6 or LiTFSI concentration in solution to elucidate how ionic species modify the CO2 solubility in alkylcarbonates-based Li-ion electrolytes by investigating the salting effects at T = 298.15 K and atmospheric pressure.