936 resultados para C(4) photosynthesis
Resumo:
在地球的环境界面上,发生着重要的物理、化学和生物学反应,进行着频繁的物质交换和输送,研究和认识环境界面的地球化学过程对揭示环境演化,评价环境质量,认识成矿机理具有重要意义[万国江,1988]化学风化是元素表生地球化学循环的重要环节,是地表碉石(浮土)-水界面间的物质交换过程,其中大气成份和植物微生物代谢产物作为活化剂。化学风化的研究历史大致分为三个阶段:定性描述阶段、化学风化速度定量测定阶段、化学风化的环境生态效应研究阶段。化学风化的动力学理论经过了扩散作用理论、表面反应理论、表面络合反应理论三个发展阶段。化学同化动力学理论及其生态效应方面的研究存在的主工问题是:矿物溶解速度是由表面反应控制的,土壤具有特殊的表面性质,但目前还没有土壤化学同化动力学的实验数据。溶解铝主要来自土壤活性铝,但土壤铝的溶解机理还不清楚;仅根据化学平衡计算就认为Al~(3+)浓度是由矿物溶解平衡控制的,这很不可靠;因为土壤孔隙水的酸度控制矿物的溶解平衡,而土壤中Al~(3+)的水解制约着土壤孔隙水的酸度。孤立地研究养分的释放和流失是不完深善的,需要建立养分循环的动力学模型。黄壤是贵州分布最广的一种土壤。贵州存在着环境酸化、土壤缺钾和“石山”化等一系列生态环境问题。黔中是一个较强的酸雨区,区内降水pH值位于3.5-4.2之间;黄壤酸度高,缓冲能力弱。黄壤中活性铝浓度高,但国内没有进行黄壤中铝的淋溶和毒性的研究。黄壤是中国最贫钾的土壤之一,但缺钾的原因和发展趋势还不清楚。本文的目的是完善土壤化学风化动力学理论、阐明环境中铝的转化机理、建立钾素循环的动力学模型。同时,预测环境酸化趋势、评价土壤钾素供给状况和铝的毒性,讨论关于贵州环境酸化、土壤缺钾和“石山”化等环境生态问题的对策。作者在红枫湖汇水区采集土壤、土壤孔隙水和河水样品。土壤孔隙水用经改进的离心法提取;用化学浸提法测定土壤中铝的形态;完成了河水、土壤孔隙水的水化学全分析、土壤化学性质的测定、土壤的化学全分析和X射线衍射分析,湖水水化学全分析数据由导师提供。作者完成了土壤淋溶实验的研究,测定了淋溶前土壤样品的化学质和化学组成,测定了淋溶液的pH、Ca~(2+)、Mg~(2+)、K~+、Na~+溶解硅和单体铝。通过土壤、土壤孔隙水、湖水的化学年组成,研究土壤的化学风化动力学;通过土壤、土壤孔隙水中铝的形态分布,研究环境中铝的迁移转化机理;根据河水中钾的含量,研究土壤钾素的地球化学循环;通过土壤淋溶实验研究土壤化学风化、土壤铝淋溶、钾素循环的动力学过程。综合现场取样和淋溶实验两方面的研究成果,获得以下几点认识:1、红枫湖汇水区黄壤的化学风化处于高岭石化阶段,酸沉降增大化学风化速度,土壤化学风化符合硅酸盐矿物溶解的表面反应理论。2、实验证实了Johnson (1981)提出的土壤缓冲机制,同时发现弱酸性和中性土壤在淋溶过程中吸附H~+。3、黄壤中铝的移动性与土壤酸度和有机质含量有关,溶解铝在土壤A-B、B-C界面发生沉淀。4、实验证实铝的溶解由三水铝石溶解反应控制,同时发现溶解铝浓度由H~+供给量和盐基离子释放量控制。5、建立钾素循环的动力学模型:EXCH. K=Fw-Fd-Fa利用河水中K~+浓度计算土壤钾素的化学侵蚀速率,可以预测土壤缺钾的趋势。6、实验发现土壤钾素的化学侵蚀过程由离子交换反应控制,钾素侵蚀速率与径流强度、土壤酸度和酸沉降有关。7、酸沉降加剧黄壤酸化和缺钾的趋势,加重黄壤中铝的毒性,需要控制酸沉降通量,使雨水pH值大于4.5。
Resumo:
This paper gives a brief review of R&D researches for light olefin synthesis directly and indirectly from synthesis gas in the Dalian Institute of Chemical Physics (DICP). The first pilot plant test was on methanol to olefin (MTO) reaction and was finished in 1993, which was based on ZSM-5-type catalyst and fixed bed reaction. In the meantime, a new indirect method designated as SDTO (syngas via dimethylether to olefin) was proposed. In this process, metal-acid bifunctional catalyst was applied for synthesis gas to dimethylether(DME) reaction, and modified SAPO-34 catalyst that was synthesized by a new low-cost method with optimal crystal size was used to convert DME to light olefin on a fluidized bed reactor. The pilot plant test on SDTO was performed and finished in 1995. Evaluation of the pilot plant data showed that 190-200 g of DME were yielded by single-pass for each standard cubic meter of synthesis gas. For the second reaction, 1.880 tons of DME or 2.615 tons of methanol produced 1 ton of light olefins, which constitutes of 0.533 ton of ethylene, 0.349 ton of propylene and 0.118 ton of butene. DICP also paid some attention on direct conversion of synthesis gas to light olefins. A semi-pilot plant test (catalyst 1.8 1) was finished in 1995 with a CO conversion > 70% and a C(2)(=)-C(4)(=) olefin selectivity 71-74% in 1000 h. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
CO hydrogenation to light alkenes was carried out on manganese promoted iron catalysts prepared by coprecipitation and sol-gel techniques. Addition of manganese in the range of 1-4 mol.% by means of coprecipitation could improve notably the percentage of C-2 (=) similar to C-4 (=) in the products, but it was not so efficient when the sol-gel method was employed. XRD and H-2-TPR measurements showed that the catalyst samples giving high C-2 (=) similar to C-4 (=) yields possessed ultra. ne particles in the form of pure alpha-(Fe1-xMnx)(2)O-3, and high quality in lowering the reduction temperature of the iron oxide. Furthermore, these samples displayed deep extent of carburization and different surface procedures to the others in the tests of Temperature Programmed Surface Carburization (TPSC). The different surface procedures of these samples were considered to have close relationship with the evolving of surface oxygen. It was also suggested that for the catalysts with high C-2 (=) similar to C-4 (=) yields, the turnover rate of the active site could be kept at a relatively high level due to the improved reducing and carburizing capabilities. Consequently, there would be a large number of sites for CO adsorption/dissociation and an enhanced carburization environment on the catalyst surface, so that the process of hydrogenation could be suppressed relatively to a low level. As a result, the percentage of the light alkenes in the products could be raised.
Resumo:
The print copy of this sermon is held by Pitts Theology Library. The Pitts Theology Library's digital copy was produced as part of the ATLA/ATS Cooperative Digital Resources Initiative (CDRI), funded by the Luce Foundation. Electronic reproduction. Atlanta, Georgia : Pitts Theology Library, Emory University, 2003. (Thanksgiving Day Sermons, ATLA Cooperative Digital Resources Initiative, CDRI). Joint CDRI project by: Andover-Harvard Library (Harvard Divinity School), Pitts Theology Library (Emory University), and Princeton Theological Seminary Libraries.
Resumo:
1. Mytilus edulis acclimated its rates of oxygen consumption when maintained at reduced oxygen tensions for periods in excess of five days. 2. Acclimation was complete down to approximately 55 mm Hg PO2 at slightly lower oxygen tensions (51, 49 and 43 mm Hg) acclimation was complete in one experiment and partial in two others. 3. The capacity to acclimate oxygen consumption was not affected by a reduction in ration nor by an increase in temperature (10 to 22 °C). 4. Mussels that were acclimated to reduced oxygen tension (40–80 mm Hg), and then exposed to P O 2 of less than 20 mm Hg for two or five hours, had depressed rates of oxygen uptake when subsequently “recovered” to 40–80 mm Hg. 5. These results are discussed in the context of biochemical studies of anaerobic metabolism in mussels from the same experiments.
Resumo:
Se propone un planteamiento teórico/conceptual para determinar si las relaciones interorganizativas e interpersonales de la netchain de las cooperativas agroalimentarias evolucionan hacia una learning netchain. Las propuestas del trabajo muestran que el mayor grado de asociacionismo y la mayor cooperación/colaboración vertical a lo largo de la cadena están positivamente relacionados con la posición horizontal de la empresa focal más cercana del consumidor final. Esto requiere una planificación y una resolución de problemas de manera conjunta, lo que está positivamente relacionado con el mayor flujo y diversidad de la información/conocimiento obtenido y diseminado a lo largo de la netchain. Al mismo tiempo se necesita desarrollar un contexto social en el que fluya la información/conocimiento y las nuevas ideas de manera informal y esto se logra con redes personales y, principalmente, profesionales y con redes internas y, principalmente, externas. Todo esto permitirá una mayor satisfacción de los socios de la cooperativa agroalimentaria y de sus distribuidores y una mayor intensidad en I+D, convirtiéndose la netchain de la cooperativa agroalimentaria, así, en una learning netchain.
Resumo:
A number of routes to hydroxyiminodehydroquinate, one of the most potent inhibitors of type II dehydroquinase that is currently known, have been investigated. Methods based on the existing literature synthesis, i.e. oxime formation of a suitably C-4 and C-5 protected methyl 3-dehydroquinate derivative were initially studied. Benzoyl protection did give the desired product but in low overall yield. An alternative BBA protection strategy starting with a protected dehydroquinate was successful in generating a C4/C5 analogue of the desired oxime in high yield. Further investigation revealed that it was unecessary to protect the dehydroquinate precursor, hence the potassium salt corresponding to the desired oxime was simply synthesised as a single isomer from methyl dehydroquinate.
Resumo:
The work presented here is aimed at determining the potential and limitations of Raman spectroscopy for fat analysis by carrying out a systematic investigation of C-4-C-24 FAME. These provide a simple, well-characterized set of compounds in which the effect of making incremental changes can be studied over a wide range of chain lengths and degrees of unsaturation. The effect of temperature on the spectra was investigated over much larger ranges than would normally be encountered in real analytical measurements. It was found that for liquid FAME the best internal standard band was the carbonyl stretching vibration nu(C = O), whose position is affected by changes in sample chain length and physical state; in the samples studied here, it was found to lie between 1729 and 1748 cm(-1). Further, molar unsaturation could be correlated with the ratio of the nu(C = O) to either nu(C = C) or delta(H-C = ) with R-2 > 0.995. Chain length was correlated with the delta(CH2)(tw)/nu(C = O) ratio, (where "tw" indicates twisting) but separate plots for odd- and even-numbered carbon chains were necessary to obtain R-2 > 0.99 for liquid samples. Combining the odd- ani even-numbered carbon chain data in a single plot reduced the correlation to R-2 = 0.94-0.96, depending on the band ratios used. For molal unsaturation the band ratio that correlated linearly with unsaturation (R-2 > 0.99) was nu(C = C)/delta(CH2)(SC) (where "sc" indicates scissoring). Other band ratios show much more complex behavior with changes in chemical and physical structure. This complex behavior results from the fact that the bands do not arise from simple vibrations of small, discrete regions of the molecules but are due to complex motions of large sections of the FAME so that making incremental changes in structure does not necessarily lead to simple incremental changes in spectra.
Resumo:
Free-radical polymerization of methyl methacrylate and styrene using conventional organic initiators in the room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([ C(4)mim][PF6]) is rapid and produces polymers with molecular weights up to 10x higher than from benzene; both polymerization and isolation of products were achieved without using VOCs, offering economic as well as environmental advantages.
Resumo:
Raman spectra of the ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]), 1-hexyl-3-methylimidazolium chloride ([C(6)mim]Cl), and 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)mim][PF(6)]), and binary mixtures thereof, have been assigned using ab initio MP2 calculations. The previously reported anti and gauche forms of the [C(4)mim](+) cation have been observed, and this study reveals this to be a general feature of the long-chain I-alkyl derivatives. Analysis of mixtures Of [C(6)mim]Cl and [C(6)mim][PF(6)] has provided information on the nature of the hydrogen bonding between the imidazolium headgroup and the anions, and the invariance of the essentially 50:50 mixture of the predominant conformers informs on the nature of glass formation in these systems.
Resumo:
Using cyclic voltammetry, the electrochemical reduction of benzoic acid (BZA) has been studied at Pt and Au microelectrodes (10 and 2 mu m diameter) in six room temperature ionic liquids (RTILs), namely [C(2)mim][NTf2], [C(4)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)mim][BF4], [C(4)mim][NO3], and [C(4)mim][PF6] (where [C(n)mim](+) = 1-alkyl-3-methylimidazolium, [NTf2](-) = bis(trifluoromethylsulfonyl)imide, [C(4)mpyrr](+) = N-butyl-N-methylpyrrolidinium, [BF4](-) = tetrafluoroborate, [NO3](-) = nitrate, and [PF6](-) = hexafluorophosphate). In all cases, a main reduction peak was observed, assigned to the reduction of BZA in a CE mechanism, where dissociation of the acid takes place before electron transfer to the dissociated proton. One anodic peak was observed on the reverse sweep, assigned to the oxidation of adsorbed hydrogen, and a reductive
Resumo:
Quartz crystal impedance analysis has been developed as a technique to assess whether room-temperature ionic liquids are Newtonian fluids and as a small-volume method for determining the values of their viscosity-density product, rho eta. Changes in the impedance spectrum of a 5-MHz fundamental frequency quartz crystal induced by a water-miscible room-temperature ionic liquid, 1-butyl-3-methylimidazolium. trifluoromethylsulfonate ([C(4)mim][OTf]), were measured. From coupled frequency shift and bandwidth changes as the concentration was varied from 0 to 100% ionic liquid, it was determined that this liquid provided a Newtonian response. A second water-immiscible ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C(4)mim][NTf2], with concentration varied using methanol, was tested and also found to provide a Newtonian response. In both cases, the values of the square root of the viscosity-density product deduced from the small-volume quartz crystal technique were consistent with those measured using a viscometer and density meter. The third harmonic of the crystal was found to provide the closest agreement between the two measurement methods; the pure ionic liquids had the largest difference of similar to 10%. In addition, 18 pure ionic liquids were tested, and for 11 of these, good-quality frequency shift and bandwidth data were obtained; these 12 all had a Newtonian response. The frequency shift of the third harmonic was found to vary linearly with square root of viscosity-density product of the pure ionic liquids up to a value of root(rho eta) approximate to 18 kg m(-2) s(-1/2), but with a slope 10% smaller than that predicted by the Kanazawa and Gordon equation. It is envisaged that the quartz crystal technique could be used in a high-throughput microfluidic system for characterizing ionic liquids.
Resumo:
The extraction of electrode kinetic parameters for electrochemical couples in room-temperature ionic liquids (RTILs) is currently an area of considerable interest. Electrochemists typically measure electrode kinetics in the limits of either transient planar or steady-state convergent diffusion for which the voltammetic response is well understood. In this paper we develop a general method allowing the extraction of this kinetic data in the region where the diffusion is intermediate between the planar and convergent limits, such as is often encountered in RTILs using microelectrode voltammetry. A general working surface is derived, allowing the inference of Butler-Volmer standard electrochemical rate constants for the peak-to-peak potential separation in a cyclic voltammogram as a function of voltage scan rate. The method is applied to the case of the ferrocene/ferrocenium couple in [C(2)mim][N(Tf)(2)] and [C(4)mim][N(Tf)(2)].
Resumo:
The oxidation of hydrogen was studied at an activated platinum micro-electrode by cyclic voltammetry in the following ionic liquids: [C(2)mim][NTf2], [C(4)mim][NTf2], [N-6.2.2.2][NTf2], [P-14.6.6.6][NTf2], [C(4)mim][OTf], [C(4)mim][BF4] [C(4)mim][PF6], [C(4)mim][NO3], [C(6)mim]Cl and [C(6)mim][FAP] (where [C(n)mim](+) = 1-alkyl-3-methylimidazolium, [N-6,N-2,N-2,N-2](+) = n-hexyltriethylammonium, [P-14,P-6,P-6,P-6](+) = tris(n-hexyltetradecyl) phosphonium, [NTf2](-) = bis(trifluoromethylsulfonyl)amide, [OTf] = trifluoromethlysulfonate and [FAP](-) = tris(perfluoroethyl)trifluorophosphate). Activation of the Pt electrode was necessary to obtain reliable and reproducible voltammetry. After activation of the electrode, the H-2 oxidation waves were nearly electrochemically and chemically reversible in [C(n)mim][NTf2] ionic liquids, chemically irreversible in [C(6)mim]Cl and [C(4)mim][NO3], and showed intermediate characteristics in OTf-, [BF4](-), [PF6](-), [FAP](-) and other [NTf2](-)-based ionic liquids. These differences reflect the contrasting interactions of protons with the respective RTIL anions. The oxidation peaks are reported relative to the half-wave potential of the cobaltocenium/cobaltocene redox couple in all ionic liquids studied, giving an indication of the relative proton interactions of each ionic liquid. A preliminary temperature study (ca. 298-333 K) has also been carried out in some of the ionic liquids. Diffusion coefficients and solubilities of hydrogen at 298 K were obtained from potential-step chronoamperometry, and there was no relationship found between the diffusion coefficients and solvent viscosity. RTILs possessing [NTf2](-) and [FAP](-) anions showed the highest micro-electrode peak currents for the oxidation in H-2 saturated solutions, with[C(4)mim][NTf2] toeing the most sensitive. The large number of available RTIL anion/cation pairs allows scope for the possible electrochemical detection of hydrogen gas for use in gas sensor technology. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Natural dolomitic rock has been investigated in the transesterification of C-4 and C-8 triglycerides and olive oil with a view to determining its viability as a solid base catalyst for use in biodiesel synthesis. XRD reveals that the dolomitic rock comprised 77% dolomite and 23% magnesian calcite. The generation of basic sites requires calcination at 900 degrees C, which increases the surface area and transforms the mineral into MgO nanocrystallites dispersed over CaO particles. Calcined dolomitic rock exhibits high activity towards the liquid phase transesterification of glyceryl tributyrate and trioctanoate, and even olive oil, with methanol for biodiesel production.