980 resultados para Bushnell family (William Bushnell, d. 1683)
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliography.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Imprint varies slightly.
Resumo:
"Index ... comp. by Mr. R. E. G. Kirk."
Resumo:
v. 1. Sir Aston Cokayne.--v. 2-5. John Crowne.--v. 6-10. Sir William D'Avenant.--v. 11. John Lacy.--v. 12 Shackerley Marmion.--v. 13. John Tatham.--v. 14. John Wilson.
Resumo:
Technological developments in biomedical microsystems are opening up new opportunities to improve healthcare procedures. Swallowable diagnostic sensing capsules are an example of these. In none of the diagnostic sensing capsules, is the sensor’s first level packaging achieved via Flip Chip Over Hole (FCOH) method using Anisotropic Conductive Adhesive (ACA). In a capsule application with direct access sensor (DAS), ACA not only provides the electrical interconnection but simultaneously seals the interconnect area and the underlying electronics. The development showed that the ACA FCOH was a viable option for the DAS interconnection. Adequate adhesive formed a strong joint that withstood a shear stress of 120N/mm2 and a compressive stress of 6N required to secure the final sensor assembly in place before encapsulation. Electrical characterization of the ACA joint in a fluid environment showed that the ACA was saturated with moisture and that the ions in the solution actively contributed to the leakage current, characterized by the varying rate of change of conductance. Long term hygrothermal aging of the ACA joint showed that a thermal strain of 0.004 and a hygroscopic strain of 0.0052 were present and resulted in a fatigue like process. In-vitro tests showed that high temperature and acidity had a deleterious effect of the ACA and its joint. It also showed that the ACA contact joints positioned at around or over 1mm would survive the gastrointestinal (GI) fluids and would be able to provide a reliable contact during the entire 72hr of the GI transit time. A final capsule demonstrator was achieved by successfully integrating the DAS, the battery and the final foldable circuitry into a glycerine capsule. Final capsule soak tests suggested that the silicone encapsulated system could survive the 72hr gut transition.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
A novel numerical model of a Bent Backwards Duct Buoy (BBDB) Oscillating Water Column (OWC) Wave Energy Converter was created based on existing isolated numerical models of the different energy conversion systems utilised by an OWC. The novel aspect of this numerical model is that it incorporates the interdependencies of the different power conversion systems rather than modelling each system individually. This was achieved by accounting for the dynamic aerodynamic damping caused by the changing turbine rotational velocity by recalculating the turbine damping for each simulation sample and applying it via a feedback loop. The accuracy of the model was validated using experimental data collected during the Components for Ocean Renewable Energy Systems (CORES) EU FP-7 project that was tested in Galway Bay, Ireland. During the verification process, it was discovered that the model could also be applied as a valuable tool when troubleshooting device performance. A new turbine was developed and added to a full scale model after being investigated using Computational Fluid Dynamics. The energy storage capacity of the impulse turbine was investigated by modelling the turbine with both high and low inertia and applying three turbine control theories to the turbine using the full scale model. A single Maximum Power Point Tracking algorithm was applied to the low-inertia turbine, while both a fixed and dynamic control algorithm was applied to the high-inertia turbine. These results suggest that the highinertia turbine could be used as a flywheel energy storage device that could help minimize output power variation despite the low operating speed of the impulse turbine. This research identified the importance of applying dynamic turbine damping to a BBDB OWC numerical model, revealed additional value of the model as a device troubleshooting tool, and found that an impulse turbine could be applied as an energy storage system.
Resumo:
Portrait engraved from painting by Sir G. Kneller.
Resumo:
Contains business correspondence, accounts and documents relating to Jacob Franks of New York, his two sons, Moses and David, a nephew, Isaac, and a John Franks of Halifax, possibly a member of the family.
Resumo:
Dr. William Hamilton Merritt, Jr. was born in 1865 and died in 1924. He was the son of Jedidiah Prendergast Merritt and Emily Prescott, grandson of William Hamilton Merritt. In 1892 he was married to Maud Claudman Hudson of Memphis, Tennessee and had a daughter and a son. During World War I he commanded the 14th battery at Flanders and after becoming ill served as part of the 9th Canadian Field Ambulance, 3rd Canadian Division, serving at a military hospital in Orpington, Kent, England and in 1917 at a military hospital in France. Dr. Merritt served as alderman and mayor for the city of St. Catharines, Ont. He was also a vice-president of the Imperial Bank of Canada, and served on the board of the Niagara Falls Suspension Bridge. A memorial service was held in St. Thomas Church, St. Catharines, Ont. on April 24, 1924.
Resumo:
‘The Father of Canadian Transportation’ is a term commonly associated with William Hamilton Merritt. Although he is most known for being one of the driving forces behind the building of the first Welland Canal, he was many things throughout his life; a soldier, merchant, promoter, entrepreneur and politician to name a few. Born on July 3, 1793 at Bedford, Westchester County, N.Y. to Thomas Merritt and Mary Hamilton, Merritt’s family relocated to Canada shortly after in 1796. The move came after Merritt’s father petitioned John Graves Simcoe for land in Upper Canada after serving under him in the Queen’s Rangers during the American Revolution. The family quickly settled into their life at Twelve Mile Creek in St. Catharines. Merritt’s father became sheriff of Lincoln County in 1803 while Merritt began his education in mathematics and surveying. After some brief travel and further education Merritt returned to Lincoln County, in 1809 to help farm his father’s land and open a general store. While a farmer and merchant, Merritt turned his attention to military endeavours. A short time after being commissioned as a Lieutenant in the Lincoln militia, the War of 1812 broke out. Fulfilling his duty, Merritt fought in the Battle of Queenston Heights in October of 1812, and numerous small battles until the Battle of Lundy’s Lane in July 1814. It was here that Merritt was captured and held in Cheshire, Massachusetts until the war ended. Arriving back in the St. Catharines area upon his release, Merritt returned to being a merchant, as well as becoming a surveyor and mill owner. Some historians hypothesize that the need to draw water to his mill was how the idea of the Welland Canals was born. Beginning with a plan to connect the Welland River with the Twelve mile creek quickly developed into a connection between the Lakes Erie and Ontario. Its main purpose was to improve the St. Lawrence transportation system and provide a convenient way to transport goods without having to go through the Niagara Falls portage. The plan was set in motion in 1818, but most living in Queenston and Niagara were not happy with it as it would drive business away from them. Along with the opposition came financial and political restraints. Despite these factors Merritt pushed on and the Welland Canal Company was chartered by the Upper Canadian Assembly on January 19, 1824. The first sod was turned on November 30, 1824 almost a year after the initial chartering. Many difficulties arose during the building of the canal including financial, physical, and geographic restrictions. Despite the difficulties two schooners passed through the canal on November 30, 1829. Throughout the next four years continual work was done on the canal as it expended and was modified to better accommodate large ships. After his canal was underway Merritt took a more active role in the political arena, where he served in various positions throughout Upper Canada. In 1851, Merritt withdrew from the Executive Council for numerous reasons, one of which being that pubic interest had diverted from the canals to railways. Merritt tried his hand at other public works outside transportation and trade. He looked into building a lunatic asylum, worked on behalf of War of 1812 veterans, aided in building Brock’s monument, established schools, aided refugee slaves from the U.S. and tried to establish a National Archives among many other feats. He was described by some as having “policy too liberal – conceptions too vast – views too comprehensive to be comprehensible by all”, but he still made a great difference in the society in which he lived. After his great contributions, Merritt died aboard a ship in the Cornwall canal on July 5, 1862. Dictionary of Canadian Biography Online http://www.biographi.ca/EN/ShowBio.asp?BioId=38719 retrieved October 2006 Today numerous groups carry on the legacy of Merritt and the canals both in the past and present. One such group is the Welland Canals Foundation. They describe themselves as: “. . . a volunteer organization which strives to promote the importance of the present and past Welland Canals, and to preserve their history and heritage. The Foundation began in 1980 and carries on events like William Hamilton Merritt Day. The group has strongly supported the Welland Canals Parkway initiative and numerous other activities”. The Welland Canals Foundation does not work alone. They have help from other local groups such as the St. Catharines Historical Society. The Society’s main objective is to increase knowledge and appreciation of the historical aspects of St. Catharines and vicinity, such as the Welland Canals. http://www.niagara.com/~dmdorey/hssc/dec2000.html - retrieved Oct. 2006 http://www.niagara.com/~dmdorey/hssc/feb2000.html - retrieved Oct. 2006