824 resultados para Bromine generation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first generation models of currency crises have often been criticized because they predict that, in the absence of very large triggering shocks, currency attacks should be predictable and lead to small devaluations. This paper shows that these features of first generation models are not robust to the inclusion of private information. In particular, this paper analyzes a generalization of the Krugman-Flood-Garber (KFG) model, which relaxes the assumption that all consumers are perfectly informed about the level of fundamentals. In this environment, the KFG equilibrium of zero devaluation is only one of many possible equilibria. In all the other equilibria, the lack of perfect information delays the attack on the currency past the point at which the shadow exchange rate equals the peg, giving rise to unpredictable and discrete devaluations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhibition of coagulation factor XII (FXII) activity represents an attractive approach for the treatment and prevention of thrombotic diseases. The few existing FXII inhibitors suffer from low selectivity. Using phage display combined to rational design, we developed a potent inhibitor of FXII with more than 100-fold selectivity over related proteases. The highly selective peptide macrocycle is a promising candidate for the control of FXII activity in antithrombotic therapy and a valuable tool in hematology research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use a simulation model to study how the diversification of electricity generation portfoliosinfluences wholesale prices. We find that technological diversification generally leads to lower market prices but that the relationship is mediated by the supply to demand ratio. In each demand case there is a threshold where pivotal dynamics change. Pivotal dynamics pre- and post-threshold are the cause of non-linearities in the influence of diversification on market prices. The findings are robust to our choice of behavioural parameters and match close-form solutions where those are available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hair follicles are spaced apart from one another at regular intervals through the skin. Although follicles are predominantly epidermal structures, classical tissue recombination experiments indicated that the underlying dermis defines their location during development. Although many molecules involved in hair follicle formation have been identified, the molecular interactions that determine the emergent property of pattern formation have remained elusive. We have used embryonic skin cultures to dissect signaling responses and patterning outcomes as the skin spatially organizes itself. We find that ectodysplasin receptor (Edar)-bone morphogenetic protein (BMP) signaling and transcriptional interactions are central to generation of the primary hair follicle pattern, with restriction of responsiveness, rather than localization of an inducing ligand, being the key driver in this process. The crux of this patterning mechanism is rapid Edar-positive feedback in the epidermis coupled with induction of dermal BMP4/7. The BMPs in turn repress epidermal Edar and hence follicle fate. Edar activation also induces connective tissue growth factor, an inhibitor of BMP signaling, allowing BMP action only at a distance from their site of synthesis. Consistent with this model, transgenic hyperactivation of Edar signaling leads to widespread overproduction of hair follicles. This Edar-BMP activation-inhibition mechanism appears to operate alongside a labile prepattern, suggesting that Edar-mediated stabilization of beta-catenin active foci is a key event in determining definitive follicle locations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The drug discovery process has been deeply transformed recently by the use of computational ligand-based or structure-based methods, helping the lead compounds identification and optimization, and finally the delivery of new drug candidates more quickly and at lower cost. Structure-based computational methods for drug discovery mainly involve ligand-protein docking and rapid binding free energy estimation, both of which require force field parameterization for many drug candidates. Here, we present a fast force field generation tool, called SwissParam, able to generate, for arbitrary small organic molecule, topologies, and parameters based on the Merck molecular force field, but in a functional form that is compatible with the CHARMM force field. Output files can be used with CHARMM or GROMACS. The topologies and parameters generated by SwissParam are used by the docking software EADock2 and EADock DSS to describe the small molecules to be docked, whereas the protein is described by the CHARMM force field, and allow them to reach success rates ranging from 56 to 78%. We have also developed a rapid binding free energy estimation approach, using SwissParam for ligands and CHARMM22/27 for proteins, which requires only a short minimization to reproduce the experimental binding free energy of 214 ligand-protein complexes involving 62 different proteins, with a standard error of 2.0 kcal mol(-1), and a correlation coefficient of 0.74. Together, these results demonstrate the relevance of using SwissParam topologies and parameters to describe small organic molecules in computer-aided drug design applications, together with a CHARMM22/27 description of the target protein. SwissParam is available free of charge for academic users at www.swissparam.ch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schizophrenia patients exhibit deficits in low-level processing, including pitch discrimination. This deficiency manifests in auditory evoked potentials (AEPs) as an impaired mismatch negativity (MMN), an electrophysiological response to infrequent target stimuli interspersed among frequent standard stimuli that typically peaks ~100ms post-stimulus onset. NMDA receptor antagonists have been shown to block MMN generation in both animals and humans, and NMDA dysfunction has been linked to the underlying pathophysiology of schizophrenia. A parallel line of evidence indicates that glutathione (GSH) regulation is perturbed in schizophrenia patients at the gene, protein and functional levels (Tosic et al., 2006). This GSH dysregulation leads to NMDA receptors' hypofunction through interaction with their redox site (Steullet et al., 2006). The present study aimed to modulate GSH levels in schizophrenia patients and assessed the effects of such a modulation on MMN generation mechanisms. N-acetyl-cysteine (NAC), a GSH precursor, was administered to schizophrenia patients, using a double-blind cross-over protocol. One group received NAC (2g/day) for 60 days and then placebo for another 60 days, and vice-versa for the second group. AEPs from patients were recorded at the onset of the protocol, at the point of cross-over, and at the end of the study. Participants were instructed to manually respond to target stimuli (2kHz pure tones occurring 20% of the time among 1kHz pure tones). Analyses of AEPs recorded at protocol onset indicated that patients (n=11) were significantly impaired in generating the MMN relative to age-matched controls (n=11). Specifically, the global field power (GFP), an index of AEP magnitude, was measured over the 70- 155ms post-stimulus interval and submitted to an analysis of variance (ANOVA). There was a significant interaction between population and stimulus frequency, indicating impaired MMN generation in patients at protocol onset. Analyses of AEPs recorded during administration of NAC (n=7) versus placebo (n=7) revealed the efficacy of this GSH precursor in modulating MMN generation mechanisms. ANOVA of GFP over the 70- 155ms post-stimulus interval, using stimulus frequency and treatment as within-participants variables, revealed a significant interaction and indicated that NAC can ameliorate MMN generation. We discuss these results in terms of potential therapeutic strategies for schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural killer (NK) cellsexpress receptors specific for class I major histocompatibility complex (MHC) molecules. In the mouse, the class I specific receptors identified to date belong to the polymorphic Ly49 receptor family. Engagement of Ly49 receptors with their respective MHC ligands results in negative regulation of NK cell effector functions, consistent with a critical role of these receptors in "missing self" recognition. The Ly49 receptors analyzed so far are clonally distributed such that multiple distinct Ly49 receptors can be expressed by individual NK cells (for review see refs. 1-3). The finding that most NK cells that express the Ly49A receptor do so from a single Ly49A allele (whereby expression can occur from the maternal or the paternal chromosome) may thus reflect a putative receptor distribution process that restricts the number of Ly49 receptors expressed in a single NK cell (3-5).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although increasing evidence suggests that CTL are important to fight the development of some cancers, the frequency of detectable tumor-specific T cells is low in cancer patients, and these cells have generally poor functional capacities, compared with virus-specific CD8(+) T cells. The generation with a vaccine of potent CTL responses against tumor Ags therefore remains a major challenge. In the present study, ex vivo analyses of Melan-A-specific CD8(+) T cells following vaccination with Melan-A peptide and CpG oligodeoxynucleotides revealed the successful induction in the circulation of effective melanoma-specific T cells, i.e., with phenotypic and functional characteristics similar to those of CTL specific for immunodominant viral Ags. Nonetheless, the eventual impact on tumor development in vaccinated melanoma donors remained limited. The comprehensive study of vaccinated patient metastasis shows that vaccine-driven tumor-infiltrating lymphocytes, although activated, still differed in functional capacities compared with blood counterparts. This coincided with a significant increase of FoxP3(+) regulatory T cell activity within the tumor. The consistent induction of effective tumor-specific CD8(+) T cells in the circulation with a vaccine represents a major achievement; however, clinical benefit may not be achieved unless the tumor environment can be altered to enable CD8(+) T cell efficacy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased production of reactive oxygen species (ROS) in mitochondria underlies major systemic diseases, and this clinical problem stimulates a great scientific interest in the mechanism of ROS generation. However, the mechanism of hypoxia-induced change in ROS production is not fully understood. To mathematically analyze this mechanism in details, taking into consideration all the possible redox states formed in the process of electron transport, even for respiratory complex III, a system of hundreds of differential equations must be constructed. Aimed to facilitate such tasks, we developed a new methodology of modeling, which resides in the automated construction of large sets of differential equations. The detailed modeling of electron transport in mitochondria allowed for the identification of two steady state modes of operation (bistability) of respiratory complex III at the same microenvironmental conditions. Various perturbations could induce the transition of respiratory chain from one steady state to another. While normally complex III is in a low ROS producing mode, temporal anoxia could switch it to a high ROS producing state, which persists after the return to normal oxygen supply. This prediction, which we qualitatively validated experimentally, explains the mechanism of anoxia-induced cell damage. Recognition of bistability of complex III operation may enable novel therapeutic strategies for oxidative stress and our method of modeling could be widely used in systems biology studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. SUMMARY Based on functional and homing properties, two subsets of memory T lymphocytes have been defined both in humans and in mice. Central memory T cells (TCM cells) express the lymph node homing receptors CD62L and CCR7, have poor effector function and proliferate efficiently upon antigenic stimulation. Effector memory T cells (TEM cells) do not express CCR7, are mostly CD62L negative and therefore are excluded from lymph nodes, but are able to migrate to sites of inflammation where they exert immediate effector function by producing inflammatory cytokines and cytotoxic mediators. In the present work we have addressed two questions that emerged since the definition of TCM and TEM cells. Firstly, what are the priming conditions for generation of TCM and TEM and, secondly, what is the migratory capacity of TCM and TEM cells in inflammatory conditions. By using naive TCR-transgenic OT-I CD8+ T cells and OT-II CD4+ T cells and ovalbumin pulsed-mature dendritic cells (DCs) we set up an in vitro system in which the strength of T cell stimulation is controlled by varying the ratio of T cells and DCs and the duration of DC-T cell interaction. Using this system we found that precursors of TCM and TEM cells are generated at different strength of stimulation and that T cells capable of persisting in vivo in the absence of antigen and of mounting recall responses is optimally induced by intermediate stimulatory strength. In addition, we found that lymph nodes draining sites of mature DC or adjuvant inoculation recruit CD8+ CD62L- CCR7- effector and TEM cells. CD8+ T cell recruitment in reactive lymph nodes requires CXCR3 expression on T cells and occurs through high endothelial venules (HEVs) in concert with HEV lurninal expression of the CXCR3 ligand CXCL9. In reactive lymph nodes, recruited T cells establish stable interactions with and kill antigen-bearing DCs, limiting the ability of these DCs to activate CD4+ and CD8+ T cells. Taken togther these data define conditions for the generation of TCM and TEM cells and define an inflammatory pathway of effector T cell migration in lymph nodes. The inducible recruitment of blood-borne effector and TEM CD8+ cells to lymph nodes may represent a mechanism for terminating primary and limiting secondary immune responses.