876 resultados para Breeding Dispersal
Resumo:
The objective of this essay is to reflect on a possible relation between entropy and emergence. A qualitative, relational approach is followed. We begin by highlighting that entropy includes the concept of dispersal, relevant to our enquiry. Emergence in complex systems arises from the coordinated behavior of their parts. Coordination in turn necessitates recognition between parts, i.e., information exchange. What will be argued here is that the scope of recognition processes between parts is increased when preceded by their dispersal, which multiplies the number of encounters and creates a richer potential for recognition. A process intrinsic to emergence is dissolvence (aka submergence or top-down constraints), which participates in the information-entropy interplay underlying the creation, evolution and breakdown of higher-level entities.
Resumo:
The presence of Ursinia nana, an Anthemideae of South-African origin which has been introduced into the NE Iberian Peninsula, is reported for the fi rst time in Europe. The data offered cover its precise location, morphology, chromosome number, ecology and a population census, as well as its life cycle, fl oral structure, reproductive biology and fruit dispersal mechanisms. Of special note are the clear predominance of autogamy (geitonogamy) over xenogamy as a reproductive system and the large number of fruits produced with high and immediate germinative capacity. These characteristics permit rapid colonization by the introduced species, which can become invasive. However, fruit predation by the ant Messor barbarus points to a natural mechanism that helps regulate population growth and makes biological control possible. Finally its possibilities of expansion in the colonized area and of naturalization in the NE Iberian Peninsula are assessed.
Resumo:
We investigated sex specificities in the evolutionary processes shaping Y chromosome, autosomes, and mitochondrial DNA patterns of genetic structure in the Valais shrew (Sorex antinorii), a mountain dwelling species with a hierarchical distribution. Both hierarchical analyses of variance and isolation-by-distance analyses revealed patterns of population structure that were not consistent across maternal, paternal, and biparentally inherited markers. Differentiation on a Y microsatellite was lower than expected from the comparison with autosomal microsatellites and mtDNA, and it was mostly due to genetic variance among populations within valleys, whereas the opposite was observed on other markers. In addition, there was no pattern of isolation by distance for the Y, whereas there was strong isolation by distance on mtDNA and autosomes. We use a hierarchical island model of coancestry dynamics to discuss the relative roles of the microevolutionary forces that may induce such patterns. We conclude that sex-biased dispersal is the most important driver of the observed genetic structure, but with an intriguing twist: it seems that dispersal is strongly male biased at large spatial scale, whereas it is mildly biased in favor of females at local scale. These results add to recent reports of scale-specific sex-biased dispersal patterns, and emphasize the usefulness of the Y chromosome in conjunction with mtDNA and autosomes to infer sex specificities.
Resumo:
The ecological relevance of behavioural syndromes is little studied in cooperative breeding systems where it is assumed that the behavioural type might influence individual decisions on helping and dispersal (e.g. shy, nonaggressive and nonexplorative individuals remain philopatric and helpful, whereas bold, aggressive, explorative individuals compete for vacancies outside their group and disperse). We measured the behavioural type of 19 subordinates in the cooperatively breeding cichlid fish Neolamprologus pulcher in their natural environment by quantifying six behavioural traits up to four times ('trials') in three different contexts, by presenting them with a conspecific intruder, a predator or nothing inside a tube. We found only moderate within-context repeatability (intraclass correlation coefficients) of the focal individual's behaviour, except for attacking either the conspecific or the predator inside the tube. The focal individual's attack rate of the tube was also positively affected by its group size. Averaging traits per context removed the between-trial variation, and consequently the across-context repeatability was very high for all six traits, except for territory maintenance. Trait values depended significantly on the context, except for territory defence. Consequently, individuals could be classified into different behavioural types based on their reaction towards the tube, but surprisingly, and opposite to laboratory studies in this species, ranging propensity and territory maintenance were not included in this behavioural syndrome. We suggest that more studies are needed to compare standardized focal personality tests (e.g. exploration propensity) with actual behaviour observed in nature (e.g. ranging and dispersal).
Resumo:
Many models of sex-biased dispersal predict that the direction of sex-bias depends upon a species' mating system. In agreement with this, almost all polygynous mammals show male-biased dispersal whereas largely monogamous birds show female-biased dispersal (FBD). The hamadryas baboon (Papio hamadryas hamadryas) is polygynous and so dispersal is predicted to be male biased, as is found in all other baboon subspecies, but there are conflicting field data showing both female and male dispersal. Using 19 autosomal genetic markers genotyped in baboons from four Saudi Arabian populations, we found strong evidence for FBD in post-dispersal adults but not, as expected, in pre-dispersal infants and young juveniles, when we compared male and female: population structure (F(st)), inbreeding (F(is)), relatedness (r), and the mean assignment index (mAIc). Furthermore, we found evidence for female-biased gene flow as population genetic structure (F(st)), was about four times higher for the paternally inherited Y, than for either autosomal markers or for maternally inherited mtDNA. These results contradict the direction of sex-bias predicted by the mating system and show that FBD has evolved recently from an ancestral state of male-biased dispersal. We suggest that the cost-benefit balance of dispersal to males and females is tightly linked to the unique hierarchical social structure of hamadryas baboons and that dispersal and social organization have coevolved.
Resumo:
Sexual selection in lek-breeding species might drastically lower male effective population size, with potentially important consequences for evolutionary and conservation biology. Using field-monitoring and parental-assignment methods, we analyzed sex-specific variances in breeding success in a population of European treefrogs, to (1) help understanding the dynamics of genetic variance at sex-specific loci, and (2) better quantify the risk posed by genetic drift in this species locally endangered by habitat fragmentation. The variance in male mating success turned out to be markedly lower than values obtained from other amphibian species with polygamous mating systems. The ratio of effective breeding size to census breeding size was only slightly lower in males (0.44) than in females (0.57), in line with the patterns of genetic diversity previously reported from H. arborea sex chromosomes. Combining our results with data on age at maturity and adult survival, we show that the negative effect of the mating system is furthermore compensated by the effect of delayed maturity, so that the estimated instantaneous effective size broadly corresponded to census breeding size. We conclude that the lek-breeding system of treefrogs impacts only weakly the patterns of genetic diversity on sex-linked genes and the ability of natural populations to resist genetic drift.
Resumo:
Introduction Societies of ants, bees, wasps and termites dominate many terrestrial ecosystems (Wilson 1971). Their evolutionary and ecological success is based upon the regulation of internal conflicts (e.g. Ratnieks et al. 2006), control of diseases (e.g. Schmid-Hempel 1998) and individual skills and collective intelligence in resource acquisition, nest building and defence (e.g. Camazine 2001). Individuals in social species can pass on their genes not only directly trough their own offspring, but also indirectly by favouring the reproduction of relatives. The inclusive fitness theory of Hamilton (1963; 1964) provides a powerful explanation for the evolution of reproductive altruism and cooperation in groups with related individuals. The same theory also led to the realization that insect societies are subject to internal conflicts over reproduction. Relatedness of less-than-one is not sufficient to eliminate all incentive for individual selfishness. This would indeed require a relatedness of one, as found among cells of an organism (Hardin 1968; Keller 1999). The challenge for evolutionary biology is to understand how groups can prevent or reduce the selfish exploitation of resources by group members, and how societies with low relatedness are maintained. In social insects the evolutionary shift from single- to multiple queens colonies modified the relatedness structure, the dispersal, and the mode of colony founding (e.g. (Crozier & Pamilo 1996). In ants, the most common, and presumably ancestral mode of reproduction is the emission of winged males and females, which found a new colony independently after mating and dispersal flights (Hölldobler & Wilson 1990). The alternative reproductive tactic for ant queens in multiple-queen colonies (polygyne) is to seek to be re-accepted in their natal colonies, where they may remain as additional reproductives or subsequently disperse on foot with part of the colony (budding) (Bourke & Franks 1995; Crozier & Pamilo 1996; Hölldobler & Wilson 1990). Such ant colonies can contain up to several hundred reproductive queens with an even more numerous workforce (Cherix 1980; Cherix 1983). As a consequence in polygynous ants the relatedness among nestmates is very low, and workers raise brood of queens to which they are only distantly related (Crozier & Pamilo 1996; Queller & Strassmann 1998). Therefore workers could increase their inclusive fitness by preferentially caring for their closest relatives and discriminate against less related or foreign individuals (Keller 1997; Queller & Strassmann 2002; Tarpy et al. 2004). However, the bulk of the evidence suggests that social insects do not behave nepotistically, probably because of the costs entailed by decreased colony efficiency or discrimination errors (Keller 1997). Recently, the consensus that nepotistic behaviour does not occur in insect colonies was challenged by a study in the ant Formica fusca (Hannonen & Sundström 2003b) showing that the reproductive share of queens more closely related to workers increases during brood development. However, this pattern can be explained either by nepotism with workers preferentially rearing the brood of more closely related queens or intrinsic differences in the viability of eggs laid by queens. In the first chapter, we designed an experiment to disentangle nepotism and differences in brood viability. We tested if workers prefer to rear their kin when given the choice between highly related and unrelated brood in the ant F. exsecta. We also looked for differences in egg viability among queens and simulated if such differences in egg viability may mistakenly lead to the conclusion that workers behave nepotistically. The acceptance of queens in polygnous ants raises the question whether the varying degree of relatedness affects their share in reproduction. In such colonies workers should favour nestmate queens over foreign queens. Numerous studies have investigated reproductive skew and partitioning of reproduction among queens (Bourke et al. 1997; Fournier et al. 2004; Fournier & Keller 2001; Hammond et al. 2006; Hannonen & Sundström 2003a; Heinze et al. 2001; Kümmerli & Keller 2007; Langer et al. 2004; Pamilo & Seppä 1994; Ross 1988; Ross 1993; Rüppell et al. 2002), yet almost no information is available on whether differences among queens in their relatedness to other colony members affects their share in reproduction. Such data are necessary to compare the relative reproductive success of dispersing and non-dispersing individuals. Moreover, information on whether there is a difference in reproductive success between resident and dispersing queens is also important for our understanding of the genetic structure of ant colonies and the dynamics of within group conflicts. In chapter two, we created single-queen colonies and then introduced a foreign queens originating from another colony kept under similar conditions in order to estimate the rate of queen acceptance into foreign established colonies, and to quantify the reproductive share of resident and introduced queens. An increasing number of studies have investigated the discrimination ability between ant workers (e.g. Holzer et al. 2006; Pedersen et al. 2006), but few have addressed the recognition and discrimination behaviour of workers towards reproductive individuals entering colonies (Bennett 1988; Brown et al. 2003; Evans 1996; Fortelius et al. 1993; Kikuchi et al. 2007; Rosengren & Pamilo 1986; Stuart et al. 1993; Sundström 1997; Vásquez & Silverman in press). These studies are important, because accepting new queens will generally have a large impact on colony kin structure and inclusive fitness of workers (Heinze & Keller 2000). In chapter three, we examined whether resident workers reject young foreign queens that enter into their nest. We introduced mated queens into their natal nest, a foreign-female producing nest, or a foreign male-producing nest and measured their survival. In addition, we also introduced young virgin and mated queens into their natal nest to examine whether the mating status of the queens influences their survival and acceptance by workers. On top of polgyny, some ant species have evolved an extraordinary social organization called 'unicoloniality' (Hölldobler & Wilson 1977; Pedersen et al. 2006). In unicolonial ants, intercolony borders are absent and workers and queens mix among the physically separated nests, such that nests form one large supercolony. Super-colonies can become very large, so that direct cooperative interactions are impossible between individuals of distant nests. Unicoloniality is an evolutionary paradox and a potential problem for kin selection theory because the mixing of queens and workers between nests leads to extremely low relatedness among nestmates (Bourke & Franks 1995; Crozier & Pamilo 1996; Keller 1995). A better understanding of the evolution and maintenance of unicoloniality requests detailed information on the discrimination behavior, dispersal, population structure, and the scale of competition. Cryptic genetic population structure may provide important information on the relevant scale to be considered when measuring relatedness and the role of kin selection. Theoretical studies have shown that relatedness should be measured at the level of the `economic neighborhood', which is the scale at which intraspecific competition generally takes place (Griffin & West 2002; Kelly 1994; Queller 1994; Taylor 1992). In chapter four, we conducted alarge-scale study to determine whether the unicolonial ant Formica paralugubris forms populations that are organised in discrete supercolonies or whether there is a continuous gradation in the level of aggression that may correlate with genetic isolation by distance and/or spatial distance between nests. In chapter five, we investigated the fine-scale population structure in three populations of F. paralugubris. We have developed mitochondria) markers, which together with the nuclear markers allowed us to detect cryptic genetic clusters of nests, to obtain more precise information on the genetic differentiation within populations, and to separate male and female gene flow. These new data provide important information on the scale to be considered when measuring relatedness in native unicolonial populations.
Resumo:
Winter weather has a strong influence on Barn Owl (Tyto alba) breeding biology. Here, we analyzed the impacts of weather conditions on reproductive performance during the breeding season using data collected over 22 years in a Swiss Barn Owl population. Variations in rain and temperature during the breeding season played an important role in within-year variation in Barn Owl reproduction. An increase in rainfall during the period from 4 to 2 weeks preceding egg laying had a positive effect on clutch size. In contrast, fledgling body mass was negatively influenced by rainfall during the 24 h preceding the measurements. Finally, ambient temperature during the rearing period was positively associated with brood size at fledging. In conclusion, weather conditions during the breeding season place constraints on Barn Owl reproduction.
Resumo:
The objective of this work was to evaluate the resistance spectra of six elite breeding lines of rice, developed for improved yield and grain quality, in inoculation tests in the greenhouse and in the field. Forty-six isolates of Pyricularia grisea collected from the cultivar Primavera, 31 from the cultivar Maravilha and 19 from six elite breeding lines, totaling 96 were utilized for inoculations. Out of 11 international and 15 Brazilian pathotypes, IC-1, IB-9, and BD-16, respectively, were identified as most frequent isolates collected from the cultivar Primavera. The isolates retrieved from Maravilha belong to four international and 11 Brazilian pathotypes, the predominant ones being IB-9 and IB-49 and BB-1 and BB-21, respectively. Lines CNAs 8711 and CNAs 8983 showed resistant reaction to all test isolates from Maravilha, while CNAs 8983 was susceptible to three isolates of Primavera pertaining to the pathotype IC-1. A majority of isolates exhibiting compatible reaction to Primavera were incompatible to Maravilha and vice-versa.Field assessment of rice blast utilizing the area under disease progress curve as a criterion for measuring disease severity showed significant differences among the six breeding lines. The isolates of P. grisea exhibiting differential reaction on breeding lines can be utilized in pyramiding resistance genes in new upland rice cultivars.
Resumo:
Inbreeding load affects not only the average fecundity of philopatric individuals but also its variance. From bet-hedging theory, this should add further dispersal pressures to those stemming from the mere avoidance of inbreeding. Pressures on both sexes are identical under monogamy or promiscuity. Under polygyny, by contrast, the variance in reproductive output decreases with dispersal rate in females but increases in males, which should induce a female-biased dispersal. To test this prediction, we performed individual-based simulations. From our results, a female-biased dispersal indeed emerges as both polygyny and inbreeding load increase. We conclude that sex-biased dispersal may be selected for as a bet-hedging strategy.
Resumo:
The objective of this study was to evaluate the efficiency of spatial statistical analysis in the selection of genotypes in a plant breeding program and, particularly, to demonstrate the benefits of the approach when experimental observations are not spatially independent. The basic material of this study was a yield trial of soybean lines, with five check varieties (of fixed effect) and 110 test lines (of random effects), in an augmented block design. The spatial analysis used a random field linear model (RFML), with a covariance function estimated from the residuals of the analysis considering independent errors. Results showed a residual autocorrelation of significant magnitude and extension (range), which allowed a better discrimination among genotypes (increase of the power of statistical tests, reduction in the standard errors of estimates and predictors, and a greater amplitude of predictor values) when the spatial analysis was applied. Furthermore, the spatial analysis led to a different ranking of the genetic materials, in comparison with the non-spatial analysis, and a selection less influenced by local variation effects was obtained.
Resumo:
The objective of this work was to compare the relative efficiency of initial selection and genetic parameter estimation, using augmented blocks design (ABD), augmented blocks twice replicated design (DABD) and group of randomised block design experiments with common treatments (ERBCT), by simulations, considering fixed effect model and mixed model with regular treatment effects as random. For the simulations, eight different conditions (scenarios) were considered. From the 600 simulations in each scenario, the mean percentage selection coincidence, the Pearsons´s correlation estimates between adjusted means for the fixed effects model, and the heritability estimates for the mixed model were evaluated. DABD and ERBCT were very similar in their comparisons and slightly superior to ABD. Considering the initial stages of selection in a plant breeding program, ABD is a good alternative for selecting superior genotypes, although none of the designs had been effective to estimate heritability in all the different scenarios evaluated.
Resumo:
Dispersal is one of the most important, yet least understood phenomena of evolutionary ecology. Triggers and consequences of dispersal are difficult to study in natural populations since dispersers can typically only be identified a posteriori. Therefore, a lot of work on dispersal is either of a theoretical nature or based on anecdotal observation. This is especially true for cryptic species such as small mammals. We conducted an experiment on the common vole, Microtus arvalis, in semi-natural enclosures and investigated the spatial and genetic establishment success of residents and dispersers in their natal and new populations. Our study uses genetic data on the reproductive success of 1255 individuals to measure the fitness trajectories of the residents and dispersing individuals. In agreement with past studies, we found that dispersal was highly male-biased, and was most probably induced by the agonistic encounters with conspecifics, suggesting it could act as an inbreeding avoidance mechanism. There was low breeding success of dispersers into new populations. Although nearly 26% of identified dispersers reproduced in their natal populations, only seven percent reproduced in the new populations. Settlement appeared to be a pre-requisite for reproduction in both sexes, and animals that did not spatially settle into a new population dispersed again, usually on the same day of immigration. In the event that dispersers reproduced in the new population, they did so at relatively low population densities. We also found age-related differences between the sexes in breeding success, and male dispersers that subsequently established in the new population were young individuals that had not reproduced in their natal population, whereas successful females had already reproduced in their natal population. In conclusion, with our detailed field data on establishment and substantial parentage assignments to understand breeding success, we were able to gain an insight into the fitness of dispersers, and how the two sexes optimise their fitness. Taken together, our results help to further understand the relative advantages and costs of dispersal in the common vole.
Resumo:
Wood ant species show differences in their social structure, especially in the level of polygyny (number of laying queens per nest) and polydomy (number of nest per colony), both within and between species. We demonstrate here for the first time that Formica lugubris displays two different social forms in close proximity in alpine unmanaged forests of the Swiss National Park. The genetic data (7 microsatellite loci) and field data indicate that one population is mostly monogynous to weakly polygynous (r = 0.438) and monodomous, the second one being polygynous (r = 0.113) and polydomous. Within this latter population new nests are founded by budding, leading to the observed high density of nests. These two different social structures, possibly being two expressions of a same continuum, could be explained by several ecological or environmental factors (e.g. habitat saturation, resource competition) and also historical effects.