954 resultados para Boundary value problems on manifolds


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we focus on a Riemann–Hilbert boundary value problem (BVP) with a constant coefficients for the poly-Hardy space on the real unit ball in higher dimensions. We first discuss the boundary behaviour of functions in the poly-Hardy class. Then we construct the Schwarz kernel and the higher order Schwarz operator to study Riemann–Hilbert BVPs over the unit ball for the poly- Hardy class. Finally, we obtain explicit integral expressions for their solutions. As a special case, monogenic signals as elements in the Hardy space over the unit sphere will be reconstructed in the case of boundary data given in terms of functions having values in a Clifford subalgebra. Such monogenic signals represent the generalization of analytic signals as elements of the Hardy space over the unit circle of the complex plane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do grau de Doutor em Matemática na especialidade de Equações Diferenciais, pela Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider the problem of time-harmonic acoustic scattering in two dimensions by convex polygons. Standard boundary or finite element methods for acoustic scattering problems have a computational cost that grows at least linearly as a function of the frequency of the incident wave. Here we present a novel Galerkin boundary element method, which uses an approximation space consisting of the products of plane waves with piecewise polynomials supported on a graded mesh, with smaller elements closer to the corners of the polygon. We prove that the best approximation from the approximation space requires a number of degrees of freedom to achieve a prescribed level of accuracy that grows only logarithmically as a function of the frequency. Numerical results demonstrate the same logarithmic dependence on the frequency for the Galerkin method solution. Our boundary element method is a discretization of a well-known second kind combined-layer-potential integral equation. We provide a proof that this equation and its adjoint are well-posed and equivalent to the boundary value problem in a Sobolev space setting for general Lipschitz domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we show stability and convergence for a novel Galerkin boundary element method approach to the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data. This problem models, for example, outdoor sound propagation over inhomogeneous flat terrain. To achieve a good approximation with a relatively low number of degrees of freedom we employ a graded mesh with smaller elements adjacent to discontinuities in impedance, and a special set of basis functions for the Galerkin method so that, on each element, the approximation space consists of polynomials (of degree $\nu$) multiplied by traces of plane waves on the boundary. In the case where the impedance is constant outside an interval $[a,b]$, which only requires the discretization of $[a,b]$, we show theoretically and experimentally that the $L_2$ error in computing the acoustic field on $[a,b]$ is ${\cal O}(\log^{\nu+3/2}|k(b-a)| M^{-(\nu+1)})$, where $M$ is the number of degrees of freedom and $k$ is the wavenumber. This indicates that the proposed method is especially commendable for large intervals or a high wavenumber. In a final section we sketch how the same methodology extends to more general scattering problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solutions to combinatorial optimization problems, such as problems of locating facilities, frequently rely on heuristics to minimize the objective function. The optimum is sought iteratively and a criterion is needed to decide when the procedure (almost) attains it. Pre-setting the number of iterations dominates in OR applications, which implies that the quality of the solution cannot be ascertained. A small, almost dormant, branch of the literature suggests using statistical principles to estimate the minimum and its bounds as a tool to decide upon stopping and evaluating the quality of the solution. In this paper we examine the functioning of statistical bounds obtained from four different estimators by using simulated annealing on p-median test problems taken from Beasley’s OR-library. We find the Weibull estimator and the 2nd order Jackknife estimator preferable and the requirement of sample size to be about 10 being much less than the current recommendation. However, reliable statistical bounds are found to depend critically on a sample of heuristic solutions of high quality and we give a simple statistic useful for checking the quality. We end the paper with an illustration on using statistical bounds in a problem of locating some 70 distribution centers of the Swedish Post in one Swedish region

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose - In many scientific and engineering fields, large-scale heat transfer problems with temperature-dependent pore-fluid densities are commonly encountered. For example, heat transfer from the mantle into the upper crust of the Earth is a typical problem of them. The main purpose of this paper is to develop and present a new combined methodology to solve large-scale heat transfer problems with temperature-dependent pore-fluid densities in the lithosphere and crust scales. Design/methodology/approach - The theoretical approach is used to determine the thickness and the related thermal boundary conditions of the continental crust on the lithospheric scale, so that some important information can be provided accurately for establishing a numerical model of the crustal scale. The numerical approach is then used to simulate the detailed structures and complicated geometries of the continental crust on the crustal scale. The main advantage in using the proposed combination method of the theoretical and numerical approaches is that if the thermal distribution in the crust is of the primary interest, the use of a reasonable numerical model on the crustal scale can result in a significant reduction in computer efforts. Findings - From the ore body formation and mineralization points of view, the present analytical and numerical solutions have demonstrated that the conductive-and-advective lithosphere with variable pore-fluid density is the most favorite lithosphere because it may result in the thinnest lithosphere so that the temperature at the near surface of the crust can be hot enough to generate the shallow ore deposits there. The upward throughflow (i.e. mantle mass flux) can have a significant effect on the thermal structure within the lithosphere. In addition, the emplacement of hot materials from the mantle may further reduce the thickness of the lithosphere. Originality/value - The present analytical solutions can be used to: validate numerical methods for solving large-scale heat transfer problems; provide correct thermal boundary conditions for numerically solving ore body formation and mineralization problems on the crustal scale; and investigate the fundamental issues related to thermal distributions within the lithosphere. The proposed finite element analysis can be effectively used to consider the geometrical and material complexities of large-scale heat transfer problems with temperature-dependent fluid densities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We deal with a class of elliptic eigenvalue problems (EVPs) on a rectangle Ω ⊂ R^2 , with periodic or semi–periodic boundary conditions (BCs) on ∂Ω. First, for both types of EVPs, we pass to a proper variational formulation which is shown to fit into the general framework of abstract EVPs for symmetric, bounded, strongly coercive bilinear forms in Hilbert spaces, see, e.g., [13, §6.2]. Next, we consider finite element methods (FEMs) without and with numerical quadrature. The aim of the paper is to show that well–known error estimates, established for the finite element approximation of elliptic EVPs with classical BCs, hold for the present types of EVPs too. Some attention is also paid to the computational aspects of the resulting algebraic EVP. Finally, the analysis is illustrated by two non-trivial numerical examples, the exact eigenpairs of which can be determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we prove well-posedness for a measure-valued continuity equation with solution-dependent velocity and flux boundary conditions, posed on a bounded one-dimensional domain. We generalize the results of an earlier paper [J. Differential Equations, 259 (2015), pp. 10681097] to settings where the dynamics are driven by interactions. In a forward-Euler-like approach, we construct a time-discretized version of the original problem and employ those results as a building block within each subinterval. A limit solution is obtained as the mesh size of the time discretization goes to zero. Moreover, the limit is independent of the specific way of partitioning the time interval [0, T]. This paper is partially based on results presented in Chapter 5 of [Evolution Equations for Systems Governed by Social Interactions, Ph.D. thesis, Eindhoven University of Technology, 2015], while a number of issues that were still open there are now resolved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we study an Hammerstein generalized integral equation u(t)=∫_{-∞}^{+∞}k(t,s) f(s,u(s),u′(s),...,u^{(m)}(s))ds, where k:ℝ²→ℝ is a W^{m,∞}(ℝ²), m∈ℕ, kernel function and f:ℝ^{m+2}→ℝ is a L¹-Carathéodory function. To the best of our knowledge, this paper is the first one to consider discontinuous nonlinearities with derivatives dependence, without monotone or asymptotic assumptions, on the whole real line. Our method is applied to a fourth order nonlinear boundary value problem, which models moderately large deflections of infinite nonlinear beams resting on elastic foundations under localized external loads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We start by studying the existence of positive solutions for the differential equation u '' = a(x)u - g(u), with u ''(0) = u(+infinity) = 0, where a is a positive function, and g is a power or a bounded function. In other words, we are concerned with even positive homoclinics of the differential equation. The main motivation is to check that some well-known results concerning the existence of homoclinics for the autonomous case (where a is constant) are also true for the non-autonomous equation. This also motivates us to study the analogous fourth-order boundary value problem {u((4)) - cu '' + a(x)u = vertical bar u vertical bar(p-1)u u'(0) = u'''(0) = 0, u(+infinity) = u'(+infinity) = 0 for which we also find nontrivial (and, in some instances, positive) solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The traditional forest industry is a good example of the changing nature of the competitive environment in many industries. Faced with drastic challenges forestindustry companies are forced to search for new value-creating strategies in order to create competitive advantage. The emerging bioenergy business is now offering promising avenues for value creation for both the forest and energy sectors because of their complementary resources and knowledge with respect to bioenergy production from forest-based biomass. The key objective of this dissertation is to examine the sources of sustainable competitive advantage and the value-creation opportunities that are emerging at the intersection between the forest and energy industries. The research topic is considered from different perspectives in order to provide a comprehensive view of the phenomenon. The study discusses the business opportunities that are related to producing bioenergy from forest-based biomass, and sheds light on the greatest challenges and threats influencing the success of collaboration between the forest and energy sectors. In addition, it identifies existing and potential bioenergy actors, and considers the resources and capabilities needed in order to prosper in the bioenergy field. The value-creation perspective is founded on strategic management accounting, the theoretical frameworks are adopted from the field of strategic management, and the future aspect is taken into account through the application of futures studies research methodology. This thesis consists of two parts. The first part provides a synthesis of the overall dissertation, and the second part comprises four complementary research papers. There search setting is explorative in nature, and both qualitative and quantitative research methods are used. As a result, the thesis lays the foundation for non-technological studies on bioenergy. It gives an example of how to study new value-creation opportunities at an industrial intersection, and discusses the main determinants affecting the value-creation process. In order to accomplish these objectives the phenomenon of value creation at the intersection between the forest and energy industries is theorized and connected with the dynamic resource-based view of the firm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intent of this research was to develop a model that describes the extent to which customer behavioral intentions are influenced by service quality, customer satisfaction and customer perceived value in the business-to-business service context. Research on customer behavioral intentions is quite fragmented and no generalized model has been presented. Thus, there was need for empirical testing. This study builds on the services marketing theory and assesses the relationships between the identified constructs. The data for the empirical analysis was collected via a quantitative online survey and a total of 226 usable responses were obtained for further analysis. The model was tested in an employment agency service setting. The measures used in this survey were first assessed by using confirmatory factor analysis (CFA) after which the hypothesized relationships were further verified using structural equation modeling (SEM) in LISREL 8.80. The analysis identified that customer satisfaction played a pivotal role in the model as it was the only direct antecedent of customer behavioral intentions, however, customer perceived value showed a strong indirect impact on buying intentions via customer satisfaction. In contrast to what was hypothesized, service quality and customer perceived value did not have a direct positive effect on behavioral intentions. Also, a contradicting finding with current literature was that sacrifice was argued to have a direct but positive impact on customer perceived value. Based on the findings in this study, managers should carefully think of their service strategies that lead to their customers’ favorable behavioral intentions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nous présentons dans cette thèse des théorèmes de point fixe pour des contractions multivoques définies sur des espaces métriques, et, sur des espaces de jauges munis d’un graphe. Nous illustrons également les applications de ces résultats à des inclusions intégrales et à la théorie des fractales. Cette thèse est composée de quatre articles qui sont présentés dans quatre chapitres. Dans le chapitre 1, nous établissons des résultats de point fixe pour des fonctions multivoques, appelées G-contractions faibles. Celles-ci envoient des points connexes dans des points connexes et contractent la longueur des chemins. Les ensembles de points fixes sont étudiés. La propriété d’invariance homotopique d’existence d’un point fixe est également établie pour une famille de Gcontractions multivoques faibles. Dans le chapitre 2, nous établissons l’existence de solutions pour des systèmes d’inclusions intégrales de Hammerstein sous des conditions de type de monotonie mixte. L’existence de solutions pour des systèmes d’inclusions différentielles avec conditions initiales ou conditions aux limites périodiques est également obtenue. Nos résultats s’appuient sur nos théorèmes de point fixe pour des G-contractions multivoques faibles établis au chapitre 1. Dans le chapitre 3, nous appliquons ces mêmes résultats de point fixe aux systèmes de fonctions itérées assujettis à un graphe orienté. Plus précisément, nous construisons un espace métrique muni d’un graphe G et une G-contraction appropriés. En utilisant les points fixes de cette G-contraction, nous obtenons plus d’information sur les attracteurs de ces systèmes de fonctions itérées. Dans le chapitre 4, nous considérons des contractions multivoques définies sur un espace de jauges muni d’un graphe. Nous prouvons un résultat de point fixe pour des fonctions multivoques qui envoient des points connexes dans des points connexes et qui satisfont une condition de contraction généralisée. Ensuite, nous étudions des systèmes infinis de fonctions itérées assujettis à un graphe orienté (H-IIFS). Nous donnons des conditions assurant l’existence d’un attracteur unique à un H-IIFS. Enfin, nous appliquons notre résultat de point fixe pour des contractions multivoques définies sur un espace de jauges muni d’un graphe pour obtenir plus d’information sur l’attracteur d’un H-IIFS. Plus précisément, nous construisons un espace de jauges muni d’un graphe G et une G-contraction appropriés tels que ses points fixes sont des sous-attracteurs du H-IIFS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial boundary conditions are presented to approximate solutions to Stokes- and Navier-Stokes problems in domains that are layer-like at infinity. Based on results about existence and asymptotics of the solutions v^infinity, p^infinity to the problems in the unbounded domain Omega the error v^infinity - v^R, p^infinity - p^R is estimated in H^1(Omega_R) and L^2(Omega_R), respectively. Here v^R, p^R are the approximating solutions on the truncated domain Omega_R, the parameter R controls the exhausting of Omega. The artificial boundary conditions involve the Steklov-Poincare operator on a circle together with its inverse and thus turn out to be a combination of local and nonlocal boundary operators. Depending on the asymptotic decay of the data of the problems, in the linear case the error vanishes of order O(R^{-N}), where N can be arbitrarily large.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The method of approximate approximations, introduced by Maz'ya [1], can also be used for the numerical solution of boundary integral equations. In this case, the matrix of the resulting algebraic system to compute an approximate source density depends only on the position of a finite number of boundary points and on the direction of the normal vector in these points (Boundary Point Method). We investigate this approach for the Stokes problem in the whole space and for the Stokes boundary value problem in a bounded convex domain G subset R^2, where the second part consists of three steps: In a first step the unknown potential density is replaced by a linear combination of exponentially decreasing basis functions concentrated near the boundary points. In a second step, integration over the boundary partial G is replaced by integration over the tangents at the boundary points such that even analytical expressions for the potential approximations can be obtained. In a third step, finally, the linear algebraic system is solved to determine an approximate density function and the resulting solution of the Stokes boundary value problem. Even not convergent the method leads to an efficient approximation of the form O(h^2) + epsilon, where epsilon can be chosen arbitrarily small.