828 resultados para Bottom-up learning
Resumo:
The development of Ring Opening Metathesis Polymerization has allowed the world of block copolymers to expand into brush block copolymers. Brush block copolymers consist of a polymer backbone with polymeric side chains, forcing the backbone to hold a stretched conformation and giving it a worm-like shape. These brush block copolymers have a number of advantages over tradition block copolymers, including faster self-assembly behavior, larger domain sizes, and much less entanglement. This makes them an ideal candidate in the development of a bottom-up approach to forming photonic crystals. Photonic crystals are periodic nanostructures that transmit and reflect only certain wavelengths of light, forming a band gap. These are used in a number of coatings and other optical uses. One and two dimensional photonic crystals are commercially available, though are often expensive and difficult to manufacture. Previous work has focused on the creation of one dimensional photonic crystals from brush block copolymers. In this thesis, I will focus on the synthesis and characterization of asymmetric brush block copolymers for self-assembly into two and three dimensional photonic crystals. Three series of brush block copolymers were made and characterized by Gel Permeation Chromatography and Nuclear Magnetic Resonance spectroscopy. They were then made into films through compressive thermal annealing and characterized by UV-Vis Spectroscopy and Scanning Electron Microscopy. Evidence of non-lamellar structures were seen, indicating the first reported creation of two or three dimensional photonic crystals from brush block copolymers.
Resumo:
52 p.
Resumo:
The unique structure and properties of brush polymers have led to increased interest in them within the scientific community. This thesis describes studies on the self-assembly of these brush polymers.
Chapter 2 describes a study on the rapid self-assembly of brush block copolymers into nanostructures with photonic bandgaps spanning the entire visible spectrum, from ultraviolet to near infrared. Linear relationships are observed between the peak wavelengths of reflection and polymer molecular weights. This work enables "bottom-up" fabrication of photonic crystals with application-tailored bandgaps, through synthetic control of the polymer molecular weight and the method of self-assembly.
Chapter 3 details the analysis of the self-assembly of symmetrical brush block copolymers in bulk and thin films. Highly ordered lamellae with domain spacing ranging from 20 to 240 nm are obtained by varying molecular weight of the backbone. The relationship between degree of polymerization and the domain spacing is reported, and evidence is provided for how rapidly the brush block copolymers self-assemble and achieve thermodynamic equilibrium.
Chapter 4 describes investigations into where morphology transitions take place as the volume fraction of each block is varied in asymmetrical brush block copolymers. Imaging techniques are used to observe a transition from lamellar to a cylindrical morphology as the volume fraction of one of the blocks exceeds 70%. It is also shown that the asymmetric brush block copolymers can be kinetically trapped into undulating lamellar structures by drop casting the samples.
Chapter 5 explores the capability of macromolecules to interdigitate into densely grafted molecular brush copolymers using stereocomplex formation as a driving force. The stereocomplex formation between complementary linear polymers and brush copolymers is demonstrated, while the stereocomplex formation between complementary brush copolymers is shown to be restricted.
Resumo:
The Notch signaling pathway enables neighboring cells to coordinate developmental fates in diverse processes such as angiogenesis, neuronal differentiation, and immune system development. Although key components and interactions in the Notch pathway are known, it remains unclear how they work together to determine a cell's signaling state, defined as its quantitative ability to send and receive signals using particular Notch receptors and ligands. Recent work suggests that several aspects of the system can lead to complex signaling behaviors: First, receptors and ligands interact in two distinct ways, inhibiting each other in the same cell (in cis) while productively interacting between cells (in trans) to signal. The ability of a cell to send or receive signals depends strongly on both types of interactions. Second, mammals have multiple types of receptors and ligands, which interact with different strengths, and are frequently co-expressed in natural systems. Third, the three mammalian Fringe proteins can modify receptor-ligand interaction strengths in distinct and ligand-specific ways. Consequently, cells can exhibit non-intuitive signaling states even with relatively few components.
In order to understand what signaling states occur in natural processes, and what types of signaling behaviors they enable, this thesis puts forward a quantitative and predictive model of how the Notch signaling state is determined by the expression levels of receptors, ligands, and Fringe proteins. To specify the parameters of the model, we constructed a set of cell lines that allow control of ligand and Fringe expression level, and readout of the resulting Notch activity. We subjected these cell lines to an assay to quantitatively assess the levels of Notch ligands and receptors on the surface of individual cells. We further analyzed the dependence of these interactions on the level and type of Fringe expression. We developed a mathematical modeling framework that uses these data to predict the signaling states of individual cells from component expression levels. These methods allow us to reconstitute and analyze a diverse set of Notch signaling configurations from the bottom up, and provide a comprehensive view of the signaling repertoire of this major signaling pathway.
Resumo:
The concept of a carbon nanotube microneedle array is explored in this thesis from multiple perspectives including microneedle fabrication, physical aspects of transdermal delivery, and in vivo transdermal drug delivery experiments. Starting with standard techniques in carbon nanotube (CNT) fabrication, including catalyst patterning and chemical vapor deposition, vertically-aligned carbon nanotubes are utilized as a scaffold to define the shape of the hollow microneedle. Passive, scalable techniques based on capillary action and unique photolithographic methods are utilized to produce a CNT-polymer composite microneedle. Specific examples of CNT-polyimide and CNT-epoxy microneedles are investigated. Further analysis of the transport properties of polymer resins reveals general requirements for applying arbitrary polymers to the fabrication process.
The bottom-up fabrication approach embodied by vertically-aligned carbon nanotubes allows for more direct construction of complex high-aspect ratio features than standard top-down fabrication approaches, making microneedles an ideal application for CNTs. However, current vertically-aligned CNT fabrication techniques only allow for the production of extruded geometries with a constant cross-sectional area, such as cylinders. To rectify this limitation, isotropic oxygen etching is introduced as a novel fabrication technique to create true 3D CNT geometry. Oxygen etching is utilized to create a conical geometry from a cylindrical CNT structure as well as create complex shape transformations in other CNT geometries.
CNT-polymer composite microneedles are anchored onto a common polymer base less than 50 µm thick, which allows for the microneedles to be incorporated into multiple drug delivery platforms, including modified hypodermic syringes and silicone skin patches. Cylindrical microneedles are fabricated with 100 µm outer diameter and height of 200-250 µm with a central cavity, or lumen, diameter of 30 µm to facilitate liquid drug flow. In vitro delivery experiments in swine skin demonstrate the ability of the microneedles to successfully penetrate the skin and deliver aqueous solutions.
An in vivo study was performed to assess the ability of the CNT-polymer microneedles to deliver drugs transdermally. CNT-polymer microneedles are attached to a hand actuated silicone skin patch that holds a liquid reservoir of drugs. Fentanyl, a potent analgesic, was administered to New Zealand White Rabbits through 3 routes of delivery: topical patch, CNT-polymer microneedles, and subcutaneous hypodermic injection. Results demonstrate that the CNT-polymer microneedles have a similar onset of action as the topical patch. CNT-polymer microneedles were also vetted as a painless delivery approach compared to hypodermic injection. Comparative analysis with contemporary microneedle designs demonstrates that the delivery achieved through CNT-polymer microneedles is akin to current hollow microneedle architectures. The inherent advantage of applying a bottom-up fabrication approach alongside similar delivery performance to contemporary microneedle designs demonstrates that the CNT-polymer composite microneedle is a viable architecture in the emerging field of painless transdermal delivery.
Resumo:
O picoplâncton (0,2 - 2,0 m) e ultraplâncton (> 2,0 - 5,0 m) despertam interesse por utilizarem ativamente a matéria orgânica dissolvida, estabelecendo a alça microbiana. Responsáveis por 50-80% da produção primária em águas oligotróficas, essas frações apresentam elevadas eficiência luminosa e razão superfície/volume que as permitem alcançar alto desenvolvimento mesmo sob baixas luminosidade e disponibilidade de nutrientes. Buscando relacionar a distribuição espacial e composição da comunidade pico e ultraplanctônica aos controles bottom-up na plataforma continental e talude ao largo dos Estados do Rio de Janeiro e São Paulo (22S a 26S), foram coletadas amostras de água em 39 estações oceanográficas e utilizadas as imagens dos sensores MODIS Terra e Aqua, bem como dados de hidrografia, para a descrição dos fenômenos oceanográficos de mesoescala. A abundância total de ambas as frações de tamanho, assim como a dominância do picoplâncton, reduziu em função do distanciamento da costa. Os organismos autotróficos foram em média (102 cél.mL-1 a 104 cél.mL-1 ) majoritariamente uma ordem de grandeza inferiores aos heterotróficos (103 cél.mL-1 a 105 cél.mL-1). A Água Central do Atlântico Sul (ACAS) e as plumas das baías de Guanabara e Sepetiba (RJ) permaneceram na plataforma interna favorecendo o aumento na concentração dos macronutrientes e refletindo na mudança da estrutura da comunidade através do aumento da contribuição de autótrofos no centro da plataforma, principalmente do ultraplâncton à superfície (cerca de 21%) e na profundidade do máximo de clorofila (44%). O transporte de águas costeiras carreadas por uma corrente de origem sul gerou o vórtice de plataforma identificado nas imagens de satélite para a região da plataforma interna de Ubatuba (SP), onde concentrações mais elevadas de amônio (0,28 M) e fosfato (9,64 M) a partir dos 50 m sustentaram maior densidade do ultra autótrofo (2,89 x 103 cél.mL-1) que superou a densidade de heterótrofos (2,50 x 103 cél.mL-1) no máximo de clorofila. Os resultados destacaram um forte gradiente nerítico-oceânico na distribuição dos organismos. Sugerem ainda a predominância do metabolismo heterotrófico na maior parte das águas oligotróficas da plataforma e talude entre o Rio de Janeiro e São Paulo, bem como a presença de caráter autotrófico naquelas regiões influenciadas por feições de mesoescala, como plumas estuarinas e vórtices de plataforma.
Resumo:
A novel method for preparing nano-supercapacitor arrays, in which each nano-supercapacitor consisted of electropolymerized Polypyrrole (PPy) electrode / porous TiO2 separator / chemical polymerized PPy electrode, was developed in this paper. The nano-supercapacitors were fabricated in the nano array pores of anodic aluminum oxide template using the bottom-up, layer-by-layer synthetic method. The nano-supercapacitor diameter was 80 nm, and length 500 nm. Based on the charge/discharge behavior of nano-supercapacitor arrays, it was found that the PPy/TiO2/PPy array supercapacitor devices performed typical electrochemical supercapacitor behavior. The method introduced here may find application in manufacturing nano-sized electrochemical power storage devices in the future for their use in the area of microelectronic devices and microelectromechanical systems.
Resumo:
As comunidades marinhas são afetadas por diversos fatores, que dentro do contexto de estrutura trófica, podem ser divididos em forças bottom-up (forças ascendentes), como por exemplo, a disponibilidade de nutrientes, e forças top-down (forças descendentes), como por exemplo, a predação. Além de modificações na estrutura das comunidades e populações de organismos, essas forças podem influenciar a produção de metabólitos secundários pelos organismos. O presente trabalho teve como objetivo avaliar o efeito das perturbações ambientais geradas pelas manipulações separadas e interativas de exclusão de macropredadores e enriquecimento com nutrientes sobre a estrutura e sobre as respostas metabólicas de comunidades marinhas incrustantes de substratos artificiais no costão rochoso de Biscaia, Baía da Ilha Grande, RJ. O desenho experimental utilizou blocos de concreto como substrato artificial, os quais foram espalhados aleatoriamente na região de infralitoral do costão rochoso. O experimento compreendeu o uso de blocos Controle (ausência de manipulação) e quatro tratamentos, todos com cinco réplicas cada. Os tratamentos foram: tratamento Exclusão de predação (gaiola contra a ação de macropredadores), tratamento Nutriente (sacos de fertilizante de liberação lenta), tratamento Nutriente + exclusão de predação (gaiola contra ação de macropredadores e sacos de fertilizante de liberação lenta) e o tratamento Controle de artefatos (gaiola semifechada para avaliar geração de artefatos). Uma área de 15 x 15 cm do bloco foi monitorada a cada 20 dias, totalizando dez medições. Foram utilizados métodos de monitoramento visual e digital de porcentagem de cobertura por espécie. O enriquecimento com nutrientes foi avaliado através de medições da concentração dos nutrientes Ortofosfato, Nitrato, Nitrito e Amônio na água do entorno do bloco. Para analisar os possíveis artefatos foi realizado experimento de fluxo de água (método Clod card) e a luminosidade dentro das gaiolas foi medida. Os dados demonstraram modificações na estrutura das comunidades bentônicas incrustantes dos substratos artificiais devido às manipulações realizadas, ou seja, pelo enriquecimento com nutrientes, pela exclusão de predação e pela interação entre os dois fatores (Nutriente + exclusão de predação). Além disso, diferenças metabólicas foram detectadas nas substâncias extraídas dos organismos dos diferentes tratamentos do experimento. Esses resultados indicam a existência de controle top-down e bottom-up sobre a comunidade bentônica do local.
Resumo:
The northern bluefin tuna (Thunnus thynnus) is a highly mobile apex predator in the Gulf of Maine. Despite current stock assessments that indicate historically high abundance of its main prey, Atlantic herring (Clupea harengus), commercial fishermen have observed declines in the somatic condition of northern bluefin tuna during the last decade. We examined this claim by reviewing detailed logbooks of northern bluefin tuna condition from a local fishermen’s cooperative and applying multinomial regression, a robust tool for exploring how a categorical variable may be related to other variables of interest. The data set contained >3082 observations of condition (fat and oil content and fish shape) from fish landed between 1991 and 2004. Energy from stored lipids is used for migration and reproduction; therefore a reduction in energy acquisition on bluefin tuna feeding grounds could diminish allocations to growth and gamete production and have detrimental consequences for rebuilding the western Atlantic population. A decline in northern bluefin tuna somatic condition could indicate substantial changes in the bottom-up transfer of energy in the Gulf of Maine, shifts in their reproductive or migratory patterns, impacts of fishing pressure, or synergistic effects from multiple causes.
Resumo:
Many applications of nanotubes and nanowires require controlled bottom-up engineering of these nanostructures. In catalytic chemical vapor deposition, the thermo-kinetic state of the nanocatalysts near the melting point is one of the factors ruling the morphology of the grown structures. We present theoretical and experimental evidence of a viscous state for nanoparticles near their melting point. The state exists over a temperature range scaling inversely with the catalyst size, resulting in enhanced self-diffusion and fluidity across the solid-liquid transformation. The overall effect of this phenomenon on the growth of nanotubes is that, for a given temperature, smaller nanoparticles have a larger reaction rate than larger catalysts.
Resumo:
Recruitment, defined and measured as the incorporation of new individuals (i.e. coral juveniles) into a population, is a fundamental process for ecologists, evolutionists and conservationists due to its direct effect on population structure and function. Because most coral populations are self-feeding, a breakdown in recruitment would lead to local extinction. Recruitment indirectly affects both renewal and maintenance of existing and future coral communities, coral reef biodiversity (bottom-up effect) and therefore coral reef resilience. This process has been used as an indirect measure of individual reproductive success (fitness) and is the final stage of larval dispersal leading to population connectivity. As a result, recruitment has been proposed as an indicator of coral-reef health in marine protected areas, as well as a central aspect of the decision-making process concerning management and conservation. The creation of management plans to promote impact mitigation,rehabilitation and conservation of the Colombian coral reefs is a necessity that requires firstly, a review and integration of existing literature on scleractinian coral recruitment in Colombia and secondly, larger scale field studies. This motivated us to summarize and analyze all existing information on coral recruitment to determine the state of knowledge, isolate patterns, identify gaps, and suggest future lines of research.
Resumo:
Cambridge Flow Solutions Ltd, Compass House, Vision Park, Cambridge, CB4 9AD, UK Real-world simulation challenges are getting bigger: virtual aero-engines with multistage blade rows coupled with their secondary air systems & with fully featured geometry; environmental flows at meta-scales over resolved cities; synthetic battlefields. It is clear that the future of simulation is scalable, end-to-end parallelism. To address these challenges we have reported in a sequence of papers a series of inherently parallel building blocks based on the integration of a Level Set based geometry kernel with an octree-based cut-Cartesian mesh generator, RANS flow solver, post-processing and geometry management & editing. The cut-cells which characterize the approach are eliminated by exporting a body-conformal mesh driven by the underpinning Level Set and managed by mesh quality optimization algorithms; this permits third party flow solvers to be deployed. This paper continues this sequence by reporting & demonstrating two main novelties: variable depth volume mesh refinement enabling variable surface mesh refinement and a radical rework of the mesh generation into a bottom-up system based on Space Filling Curves. Also reported are the associated extensions to body-conformal mesh export. Everything is implemented in a scalable, parallel manner. As a practical demonstration, meshes of guaranteed quality are generated for a fully resolved, generic aircraft carrier geometry, a cooled disc brake assembly and a B747 in landing configuration. Copyright © 2009 by W.N.Dawes.
Resumo:
Rice bran is widely used by fish farmers as supplementary feed while soybean cake is used both as feed and as fertilizer in fishponds. Both fish meal and shrimp head have been found acceptable as feed ingredients. However, not much is known of the acceptability and efficiency of a mixture of these ingredients as feed for Penaeus monodon larvae. Ninety 127-day old P. monodon were measured for length and weight and were randomly divided into nine aquaria each containing 20 liters of water. These were fed 'lampirong' for two months previous to the study. There were three replications for each treatment. Length, weight, and survival rates were used to compare the efficiency of the diets. Weighed amounts of pellets equivalent to 100% of the body weight were fed during the first three days and reduced to 50% thereafter. A stopwatch was used to determine the length of time that elapsed before the shrimps would approach the pellet. Ten shrimps approximately 4 months in age were placed in 10 liters of water in a 25-liter aquarium. Two grams of each pellet type were placed simultaneously on opposite sides of the aquarium. The time that elapsed from the moment the pellets sunk to the bottom up to the time that any one shrimp approached the pellets was recorded. The group fed the imported pellets gained the most. Those fed FP-2s-77 elongated faster than those fed FP-1s-77. Survival rate of those fed FP-2s-77 was 37% while those fed imported pellets was 73%. Both 1s and 2s pellets disintegrated in water easily but the imported pellets were stable even after six hours in water. The attractability test for the pellets showed that the prawns were more readily attracted to the pellets 1s and 2s than to the imported pellets.
Resumo:
This paper discusses the sustainability of two different approaches to upgrade water and sanitation infrastructure in Kenya’s largest informal settlement, Kibera. A background to the urbanization of poverty is outlined along with approaches to urban slums. Two case-studies of completed interventions of infrastructure upgrading have been investigated. In one case-study, the upgrading method driven by an NGO uses an integrated livelihoods and partnership technique at community level to create an individual project. in the other case-study, the method is a collaboration between the government and a multi-lateral agency to deliver upgraded services as a part of a country-wide programme. The ‘bottom-up’ (project) and ‘top-down’ (programme) approaches each seek sustainability and aim to achieve this in the same context using different techniques. This paper investigates the sustainability of each approach. The merits and challenges of the approaches are discussed with the projected future of Kibera. The paper highlights the valuable opportunity for the role of appropriate engineering infrastructure for sustainable urban development, as well as the alleviation of poverty in a developing context.
Resumo:
One-dimensional ferroelectric nanostructures, carbon nanotubes (CNT) and CNTinorganic oxides have recently been studied due to their potential applications for microelectronics. Here, we report coating of a registered array of aligned multi-wall carbon nanotubes (MWCNT) grown on silicon substrates by functional ferroelectric Pb(Zr,Ti)O 3 (PZT) which produces structures suitable for commercial prototype memories. Microstructural analysis reveals the crystalline nature of PZT with small nanocrystals aligned in different directions. First-order Raman modes of MWCNT and PZT/MWCNT/n-Si show the high structural quality of CNT before and after PZT deposition at elevated temperature. PZT exists mostly in the monoclinic Cc/Cm phase, which is the origin of the high piezoelectric response in the system. Lowloss square piezoelectric hysteresis obtained for the 3D bottom-up structure confirms the switchability of the device. Currentvoltage mapping of the device by conducting atomic force microscopy (c-AFM) indicates very low transient current. Fabrication and functional properties of these hybrid ferroelectriccarbon nanotubes is the first step towards miniaturization for future nanotechnology sensors, actuators, transducers and memory devices. © 2012 IOP Publishing Ltd.