827 resultados para Boom structures
Resumo:
The high density of slope failures in western Norway is due to the steep relief and to the concentration of various structures that followed protracted ductile and brittle tectonics. On the 72 investigated rock slope instabilities, 13 were developed in soft weathered mafic and phyllitic allochthons. Only the intrinsic weakness of such rocks increases the susceptibility to gravitational deformation. In contrast, the gravitational structures in the hard gneisses reactivate prominent ductile or/and brittle fabrics. At 30 rockslides along cataclinal slopes, weak mafic layers of foliation are reactivated as basal planes. Slope-parallel steep foliation forms back-cracks of unstable columns. Folds are specifically present in the Storfjord area, together with a clustering of potential slope failures. Folding increases the probability of having favourably orientated planes with respect to the gravitational forces and the slope. High water pressure is believed to seasonally build up along the shallow-dipping Caledonian detachments and may contribute to destabilization of the rock slope upwards. Regional cataclastic faults localized the gravitational structures at 45 sites. The volume of the slope instabilities tends to increase with the amount of reactivated prominent structures and the spacing of the latter controls the size of instabilities.
Resumo:
In this paper, we study formal deformations of Poisson structures, especially for three families of Poisson varieties in dimensions two and three. For these families of Poisson structures, using an explicit basis of the second Poisson cohomology space, we solve the deformation equations at each step and obtain a large family of formal deformations for each Poisson structure which we consider. With the help of an explicit formula, we show that this family contains, modulo equivalence, all possible formal eformations. We show moreover that, when the Poisson structure is generic, all members of the family are non-equivalent.
Resumo:
This paper considers the lag structures of dynamic models in economics, arguing that the standard approach is too simple to capture the complexity of actual lag structures arising, for example, from production and investment decisions. It is argued that recent (1990s) developments in the the theory of functional differential equations provide a means to analyse models with generalised lag structures. The stability and asymptotic stability of two growth models with generalised lag structures are analysed. The paper concludes with some speculative discussion of time-varying parameters.
Resumo:
We consider a population of agents distributed on the unit interval. Agents form jurisdictions in order to provide a public facility and share its costs equally. This creates an incentive to form large entities. Individuals also incur a transportation cost depending on their location and that of the facility which makes small jurisdictions advantageous. We consider a fairly general class of distributions of agents and generalize previous versions of this model by allowing for non-linear transportation costs. We show that, in general, jurisdictions are not necessarily homogeneous. However, they are if facilities are always intraterritory and transportation costs are superadditive. Superadditivity can be weakened to strictly increasing and strictly concave when agents are uniformly distributed. Keywords: Consecutiveness, stratification, local public goods, coalition formation, country formation. JEL Classification: C71 (Cooperative Games), D71 (Social Choice; Clubs; Committees; Associations), H73 (Interjurisdictional Differentials and Their Effects).
Resumo:
The 30 M m3 rockslide that occurred on the east face of Turtle Mountain in the Crowsnest Pass area (Alberta) in 1903 is one of the most famous landslides in the world. In this paper, the structural features of the South part of Turtle Mountain are investigated in order to understand the present-day scar morphology and to identify the most important failure mechanisms. The structural features were mapped using a high resolution digital elevation model (DEM) in order to have a large overview of the relevant structural features. At the same time, a field survey was carried out and small scale fractures were analyzed in different parts of southern Turtle Mountain in order to confirm the DEM analysis. Results allow to identify six main discontinuity sets that influence the Turtle Mountain morphology. These discontinuity sets were then used to identify the potential failure mechanisms affecting Third Peak and South Peak area.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We study the existence of solutions to general measure-minimization problems over topological classes that are stable under localized Lipschitz homotopy, including the standard Plateau problem without the need for restrictive assumptions such as orientability or even rectifiability of surfaces. In case of problems over an open and bounded domain we establish the existence of a “minimal candidate”, obtained as the limit for the local Hausdorff convergence of a minimizing sequence for which the measure is lower-semicontinuous. Although we do not give a way to control the topological constraint when taking limit yet— except for some examples of topological classes preserving local separation or for periodic two-dimensional sets — we prove that this candidate is an Almgren-minimal set. Thus, using regularity results such as Jean Taylor’s theorem, this could be a way to find solutions to the above minimization problems under a generic setup in arbitrary dimension and codimension.
Resumo:
Åknes is an active complex large rockslide of approximately 30?40 Mm3 located within the Proterozoic gneisses of western Norway. The observed surface displacements indicate that this rockslide is divided into several blocks moving in different directions at velocities of between 3 and 10 cm year?1. Because of regional safety issues and economic interests this rockslide has been extensively monitored since 2004. The understanding of the deformation mechanism is crucial for the implementation of a viable monitoring system. Detailed field investigations and the analysis of a digital elevation model (DEM) indicate that the movements and the block geometry are controlled by the main schistosity (S1) in gneisses, folds, joints and regional faults. Such complex slope deformations use pre-existing structures, but also result in new failure surfaces and deformation zones, like preferential rupture in fold-hinge zones. Our interpretation provides a consistent conceptual three-dimensional (3D) model for the movements measured by various methods that is crucial for numerical stability modelling. In addition, this reinterpretation of the morphology confirms that in the past several rockslides occurred from the Åknes slope. They may be related to scars propagating along the vertical foliation in folds hinges. Finally, a model of the evolution of the Åknes slope is presented.
Resumo:
Brain deformations induced by space-occupying lesions may result in unpredictable position and shape of functionally important brain structures. The aim of this study is to propose a method for segmentation of brain structures by deformation of a segmented brain atlas in presence of a space-occupying lesion. Our approach is based on an a priori model of lesion growth (MLG) that assumes radial expansion from a seeding point and involves three steps: first, an affine registration bringing the atlas and the patient into global correspondence; then, the seeding of a synthetic tumor into the brain atlas providing a template for the lesion; finally, the deformation of the seeded atlas, combining a method derived from optical flow principles and a model of lesion growth. The method was applied on two meningiomas inducing a pure displacement of the underlying brain structures, and segmentation accuracy of ventricles and basal ganglia was assessed. Results show that the segmented structures were consistent with the patient's anatomy and that the deformation accuracy of surrounding brain structures was highly dependent on the accurate placement of the tumor seeding point. Further improvements of the method will optimize the segmentation accuracy. Visualization of brain structures provides useful information for therapeutic consideration of space-occupying lesions, including surgical, radiosurgical, and radiotherapeutic planning, in order to increase treatment efficiency and prevent neurological damage.
Resumo:
Eggs of two species belonging to the Arribalzagia Series of the Laticorn Section of Anopheles (Anopheles) collected in Brazil are described from scanning electron micrographs. The An. fluminensis egg is long with shallow floats displaced far dorsally. The narrow deck region is overlain by a frill modified into prominent ridges that are nearly continuous to both ends of the egg. Slightly opened decks at both poles contain an average of four lobed tubercles. Polygonal, plastron-type chorionic cells cover the lateral and dorsal surfaces. The egg of An. shannoni is unique in possessing 22-27 fingerlike filaments that project with regular spacing from each of its massive floats. These filaments and their bases are highly perforated and are believed to trap air and support flotation of the egg with the dorsal surface up, contrary to the usual orientation for anophelines. The eggs are compared with those of related species bearing similar structures, notably An. fluminensis with An. mediopunctatus s.s and An. shannoni with An. peryassui