986 resultados para Bone breaking strength


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have reported previously that long-term participation of weight-bearing exercise is associated with increased QCT-derived cortical bone size and strength in middle-aged and older men, but not whole bone cortical volumetric BMD. However, since bone remodeling and the distribution of loading-induced strains within cortical bone are non-uniform, the aim of this study was to examine the effects of lifetime loading history on cortical bone mass distribution and bone shape in healthy community dwelling middle-aged and older men. We used QCT to assess mid-femur and mid-tibia angular bone mass distribution around its center (polar distribution), the bone density distribution through the cortex (radial distribution), and the ratio between the maximum and minimum moments of inertia (Imax/Imin ratio) in 281 men aged 50 to 79 years. Current (> 50 years) and past (13–50 years) sport and leisure time activity was assessed by questionnaire to calculate an osteogenic index (OI) during adolescence and adulthood. All men were then categorized into a high (H) or low/non impact (L) group according to their OI scores in each period. Three contrasting groups were then formed to reflect weight-bearing impact categories during adolescence and then adulthood: H–H, H–L and L–L. For polar bone mass distribution, bone deposition in the anterolateral, medial and posterior cortices were 6–10% greater at the mid-femur and 9–24% greater at mid-tibia in men in the highest compared to lowest tertile of lifetime loading (p < 0.01– < 0.001). When comparing the influence of contrasting loading history during adolescence and adulthood, there was a graded response between the groups in the distribution of bone mass at the anterior-lateral and posterior regions of the mid-tibia (H–H > H–L > L–L). For radial bone density distribution, there were no statistically significant effects of loading at the mid-femur, but a greater lifetime OI was associated with a non-significant 10–15% greater bone density near the endocortical region of the mid-tibia. In conclusion, a greater lifetime loading history was associated with region-specific adaptations in cortical bone density.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Muscle mass and strength have been shown to be important factors in bone strength. Low muscular force predisposes to falling especially among elderly. Regular exercise helps to prevent falls and resulting bone fractures. Better understanding of muscle function and its importance on bone properties may thus add information to fracture prevention. Therefore the purpose of this study was to examine the relationship between bone strength and muscular force production. Twenty-young men [24 (2) years] and 20 [24 (3) years] women served as subjects. Bone compressive (BSId) and bending strength indices (50 Imax) were measured with peripheral quantitative computed tomography (pQCT) at tibial mid-shaft and at distal tibia. Ankle plantarflexor muscle volume (MV) was estimated from muscle thickness measured with ultrasonography. Neuromuscular performance was evaluated from the measurements of maximal ground reaction force (GRF) in bilateral jumping and of eccentric maximal voluntary ankle plantarflexor torque (MVC). Specific tension (ST) of the plantarflexors was calculated by dividing the MVC with the muscle volume. Activation level (AL) was measured with superimposed twitch method. Distal tibia BSId and tibial mid-shaft 50 Imax correlated positively with GRF, MVC and MV in men (r = 0.45–0.67, P\0.05). Tibial mid-shaft 50 Imax and neuromuscular performance variables were correlated in women (r = 0.46–0.59, P\0.05), whereas no correlation was seen in distal tibia. In the regression analysis, MV and ST could explain 64% of the variance in tibial mid-shaft bone strength and 41% of the variation in distal tibia bone strength. The study emphasizes that tibial strength is related to maximal neuromuscular performance. In addition, tibial mid-shaft seems to be more dependent on the neuromuscular performance, than distal tibia. In young adults, the association between bone adaptation and neuromuscular performance seems to be moderate and also site and loading specific.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maintaining low body weight for the sake of performance and aesthetic purposes is a common feature among young girls and women who exercise on a regular basis, including elite, college and high-school athletes, members of fitness centres, and recreational exercisers. High energy expenditure without adequate compensation in energy intake leads to an energy deficiency, which may ultimately affect reproductive function and bone health. The combination of low energy availability, menstrual disturbances and low bone mineral density is referred to as the ‘female athlete triad’. Not all athletes seek medical assistance in response to the absence of menstruation for 3 or more months as some believe that long-term amenorrhoea is not harmful. Indeed, many women may not seek medical attention until they sustain a stress fracture.
This review investigates current issues, controversies and strategies in the clinical management of bone health concerns related to the female athlete triad. Current recommendations focus on either increasing energy intake or decreasing energy expenditure, as this approach remains the most efficient strategy to prevent further bone health complications. However, convincing the athlete to increase energy availability can be extremely challenging.
Oral contraceptive therapy seems to be a common strategy chosen by many physicians to address bone health issues in young women with amenorrhoea, although there is little evidence that this strategy improves bone mineral density in this population. Assessment of bone health itself is difficult due to the limitations of dual-energy X-ray absorptiometry (DXA) to estimate bone strength. Understanding how bone strength is affected by low energy availability, weight gain and resumption of menses requires further investigations using 3-dimensional bone imaging techniques in order to improve the clinical management of the female athlete triad.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mg–Zr–Ca alloys were developed for new biodegradable bone implant materials. The microstructure and mechanical property of the Mg–xZr–yCa [x=0·5, 1·0% and y=1·0, 2·0% (wt-% hereafter)] alloys were characterised by optical microscopy, compressive and hardness tests. The in vitro cytotoxicity of the alloys was assessed using osteoblast-like SaOS2 cells. The corrosion behaviour of these alloys was evaluated by soaking the alloys in simulated body fluid (SBF) and modified minimum essential medium (MMEM). Results indicated that the mechanical properties of the Mg–Zr–Ca are in the range of the mechanical properties of natural bone. The corrosion rate and biocompatibility decreases with the increase in the Ca content in the Mg–Zr–Ca alloys. The solutions of SBF and MMEM with the immersion of the Mg–Zr–Ca alloys show strong alkalisation. The Zr addition to the Mg–Zr–Ca alloys leads to an increase in the corrosion resistance, compressive strength and the ductility of the alloys, and a decrease in the elastic modulus of the Mg–Zr–Ca alloys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Areal bone mineral density is commonly categorised into normal bone mineral density, osteopaenia and osteoporosis on the basis of nominal thresholds recommended by the World Health Organization. However, bone mineral density is a continuous variable and there is a strong association between lower bone mineral density and greater risk for fracture. Fracture risk is not negligible in persons with moderate deficits in bone mineral density. Although absolute fracture risk is greatest for individuals with osteoporosis, more than half of the fractures arise from those with osteopaenia, and even normal bone mineral density, a probable consequence of greater numbers of individuals at risk in these categories. However, areal bone mineral density measurements used commonly in clinical practice do not detect differences in bone tissue properties, geometry and microarchitecture, which contribute to bone strength. Newer technologies such as high-resolution peripheral computed tomography have the advantage of assessing trabecular and cortical components of bone separately, in addition to geometric characteristics of the skeleton. Quantifying these parameters and considering clinical risk factors that affect fracture risk independent of bone quantity and quality, may better discriminate between high- and low-risk individuals. This would improve the decision-making for targeting appropriate interventions, either lifestyle or medication, to reduce thepublic health burden of fractures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium-strontia (Ti-SrO) metal matrix composites (MMCs) with 0, 1, 3 and 5% (weight ratio) of SrO have been fabricated through the powder metallurgy method. Increasing the weight ratio of SrO from 0 to 5%, the compressive strength of Ti-SrO MMCs increased from 982 MPa to 1753 MPa, while the ultimate strain decreased from 0.28 to 0.05. The elastic moduli of Ti-3SrO and Ti-5SrO MMCs were higher than those of Ti and Ti-1SrO MMC samples. Additionally, the micro hardness of Ti-SrO MMCs was enhanced from 59% to 190% with the addition of SrO. The enhanced compression strength and micro hardness of Ti-SrO MMCs were attributed to the Hall-Petch effect and the SrO dispersion strengthening in the Ti matrix. MTS assay results demonstrated that Ti-SrO MMCs with 3% SrO exhibited enhanced proliferation of osteoblast-like cells. Alkaline phosphatase activity of cells was not influenced significantly on the surface of Ti-SrO MMCs compared with pure Ti in a term longer than 10 days. The cell morphology on the Ti-SrO MMCs was observed using confocal microscopy and scanning electron microscopy, which confirmed that the Ti-3%SrO MMCs showed optimal in vitro biocompatibility. This journal is © the Partner Organisations 2014.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Periodontitis and other bone loss diseases, decreasing bone volume and strength, have a significant impact on millions of people with the risk of tooth loss and bone fracture. The integrity and strength of bone are maintained through the balance between bone resorption and bone formation by osteoclasts and osteoblasts, respectively, so the loss of bone results from the disruption of such balance due to increased resorption or/and decreased formation of bone. The goal of therapies for diseases of bone loss is to reduce bone loss, improve bone formation, and then keep healthy bone density. Current therapies have mostly relied on long-term medication, exercise, anti-inflammatory therapies, and changing of the life style. However there are some limitations for some patients in the effective treatments for bone loss diseases because of the complexity of bone loss. Interleukin-10 (IL-10) is a potent anti-inflammatory cytokine, and recent studies have indicated that IL-10 can contribute to the maintenance of bone mass through inhibition of osteoclastic bone resorption and regulation of osteoblastic bone formation. This paper will provide a brief overview of the role of IL-10 in bone loss diseases and discuss the possibility of IL-10 adoption in therapy of bone loss diseases therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composite biomaterials provide alternative materials that improve on the properties of the individual components and can be used to replace or restore damaged or diseased tissues. Typically, a composite biomaterial consists of a matrix, often a polymer, with one or more fillers that can be made up of particles, sheets or fibres. The polymer matrix can be chosen from a wide range of compositions and can be fabricated easily and rapidly into complex shapes and structures. In the present study we have examined three size fractions of collagen-containing particles embedded at up to 60% w/w in a poly(vinyl alcohol) (PVA) matrix. The particles used were bone particles, which are a mineral-collagen composite and demineralised bone, which gives naturally cross-linked collagen particles. SEM showed well dispersed particles in the PVA matrix for all concentrations and sizes of particles, with FTIR suggesting collagen to PVA hydrogen bonding. Tg of membranes shifted to a slightly lower temperature with increasing collagen content, along with a minor amount of melting point depression. The modulus and tensile strength of membranes were improved with the addition of both particles up to 10 wt%, and were clearly strengthened by the addition, although this effect decreased with higher collagen loadings. Elongation at break decreased with collagen content. Cell adhesion to the membranes was observed associated with the collagen particles, indicating a lack of cytotoxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SUMMARY: The addition of whole-body vibration to high-load resistive exercise may provide a better stimulus for the reduction of bone loss during prolonged bed rest (spaceflight simulation) than high-load resistive exercise alone. INTRODUCTION: Prior work suggests that the addition of whole-body vibration to high-load resistive exercise (RVE) may be more effective in preventing bone loss in spaceflight and its simulation (bed rest) than resistive exercise alone (RE), though this hypothesis has not been tested in humans. METHODS: Twenty-four male subjects as part of the 2nd Berlin Bed Rest Study performed RVE (n = 7), RE (n = 8) or no exercise (control, n = 9) during 60-day head-down tilt bed rest. Whole-body, spine and total hip dual X-ray absorptiometry (DXA) measurements as well as peripheral quantitative computed tomography measurements of the tibia were conducted during bed rest and up to 90 days afterwards. RESULTS: A better retention of bone mass in RVE than RE was seen at the tibial diaphysis and proximal femur (p ≤ 0.024). Compared to control, RVE retained bone mass at the distal tibia and DXA leg sub-region (p ≤ 0.020), but with no significant difference to RE (p ≥ 0.10). RE impacted significantly (p = 0.038) on DXA leg sub-region bone mass only. Calf muscle size was impacted similarly by both RVE and RE. On lumbar spine DXA, whole-body DXA and calcium excretion measures, few differences between the groups were observed. CONCLUSIONS: Whilst further countermeasure optimisation is required, the results provide evidence that (1) combining whole-body vibration and high-load resistance exercise may be more efficient than high-load resistive exercise alone in preventing bone loss at some skeletal sites during and after prolonged bed rest and (2) the effects of exercise during bed rest impact upon bone recovery up to 3 months afterwards.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examined the effects of bed-rest, recovery and exercise countermeasures on bone density and structure at the distal tibia and radius as measured via high-resolution peripheral computed tomography. 24 subjects underwent 60-days of head-down tilt bed-rest and performed either resistive vibration exercise (RVE; n = 7), resistive exercise only (RE; n = 8) or no exercise (n = 9; 2nd Berlin BedRest Study; BBR2-2). Measurements were performed regularly during and up to 2-years after 60d bed-rest. At the distal tibia marked reductions in cortical area, cortical thickness and bone density but increases in periosteal perimeter and trabecular area were seen (p all<0.001). Recovery of most parameters occurred within 180d after bed-rest. At the distal radius, persistent increases in cortical area, cortical thickness, cortical density and total density and decreases in trabecular area were seen (p all ≤ 0.005). A significant effect of RVE (p = 0.003), but not RE, was seen on cortical area at the distal tibia, with few effects of the countermeasures observed on the remaining parameters. The current study represents the first implementation of high-resolution peripheral computed tomography in bed-rest in male subjects and helps to understand the patterns of bone remodeling due to bed-rest and recovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

UNLABELLED: Individuals who are involved in explosive sport types, such as 100-m sprints and long jump, have greater bone density, leg muscle size, jumping height and grip strength than individuals involved in long-distance running. INTRODUCTION: The purpose of this study is to examine the relationship between different types of physical activity with bone, lean mass and neuromuscular performance in older individuals. METHODS: We examined short- (n = 50), middle- (n = 19) and long-distance (n = 109) athletes at the 15th European Masters Championships in Poznań, Poland. Dual X-ray absorptiometry was used to measure areal bone mineral density (aBMD) and lean tissue mass. Maximal countermovement jump, multiple one-leg hopping and maximal grip force tests were performed. RESULTS: Short-distance athletes showed significantly higher aBMD at the legs, hip, lumbar spine and trunk compared to long-distance athletes (p ≤ 0.0012). Countermovement jump performance, hop force, grip force, leg lean mass and arm lean mass were greater in short-distance athletes (p ≤ 0.027). A similar pattern was seen in middle-distance athletes who typically showed higher aBMD and better neuromuscular performance than long-distance athletes, but lower in magnitude than short-distance athletes. In all athletes, aBMD was the same or higher than the expected age-adjusted population mean at the lumbar spine, hip and whole body. This effect was greater in the short- and middle-distance athletes. CONCLUSIONS: The stepwise relation between short-, middle- and long-distance athletes on bone suggests that the higher-impact loading protocols in short-distance disciplines are more effective in promoting aBMD. The regional effect on bone, with the differences between the groups being most marked at load-bearing regions (legs, hip, spine and trunk) rather than non-load-bearing regions, is further evidence in support of the idea that bone adaptation to exercise is dependent upon the local loading environment, rather than as part of a systemic effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aging is associated with decline in muscle mass and strength and reduced bone density. Age-related bone loss is a primary factor in osteoporosis and all individuals are potential candidates for osteoporosis because bone loss with aging occurs in men and women, but less studied in men. To examine the appropriateness of hindlimb elevation, by tail suspension as a model for diminished mechanical loading, and to determine the influence of age on bone responsiveness to skeletal unloading, we use dual X ray absorptiometry (DXA) and digital radiographic images to analyze the response of the femur from mature rats to biomechanical loads. Femurs from male Wistar rats (9-mo-old) were scanned using DXA and DIGORA and measures obtained in ephipyseal and diaphyseal regions of interest. The mechanical testing was divided into compression load to fracture the head and a three-point bending load to fracture the femur middiaphysis. In femoral epiphysis from hindlimb unload (HU), animals presented significant differences between mineral bone content and density assessed by DXA. Detailed regions of femoral epiphysis (head, throcanteric fossa, throcanter and metaphysis) presented significant lower values from radiographic density. Only compressive load necessary to fracture the femoral head neck was also significantly diminished in HU animals. Disuse induced, as in elderly patients, deterioration of the trabecular bone architecture with critical effect on bone fragility. Rats with 21 days of hindlimb unloading can simulate disuse, suggesting that certain sub-regions of their aging bones are more susceptible to fracture, while other, i.e. diaphyses, are not.