810 resultados para Blooming Grove
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Time-series flux variabilities of biogenic opal particles were measured during 1982-1986 at pelagic Station PAPA (50° N, 145° W) located just south of the Gulf of Alaska, eastern North Pacific. PARFLUX sediment traps with two week sampling increments were deployed at 1000 m and 3800 m in 4200 m deep water, yielding nearly continuous time-series flux records for four years. The flux data allowed us to examine interannual and seasonal variabilities of siliceous phytoplankton production as well as environmental signals retained within the siliceous shells, which can be used to reconstruct environments.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Pollen from the upper 2.75 m of a core taken 200 km west of the Golfo de Guayaquil, Ecuador (Trident 163-13, 3° S, 84° W, 3,000 m water depth) documents changes in Andean vegetation and climate of the Cordillera Occidental for ~17,000 years before and after the last glacial maximum.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The history of the El Nino phenomena is recorded in both the fluvial and coastal sediments of northern Peru. The fluvial record was presented at the 1987 PACLIM Workshop and is discussed in detail elsewhere (Wells, 1987). However, the number of radiocarbon dated El Nino events has increased since Wells (1987) was published; this data is presented in Table 1.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The 1000 year records of particulate deposition (soluble and insoluble), oxygen isotopic ratios, and net accumulation from the Quelccaya ice cap are presented. The net accumulation record from Quelccaya is shown to serve as a reasonable proxy for the water levels in Lake Titicaca. ... The ice core record from the Dunde ice cap offers the potential to reconstruct a very detailed history of environmental conditions on the Tibetan Plateau for the last 3000 years.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Comparative study of environmental influences on the population dynamics of three North American species of quail, California quail (Callipepla california), Gambel's quail (C. gambellii), and scaled quail (C. squamata) has lead to identification of differential sensitivity of these species to global weather patterns.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): It seems that an average water year is a rare beast; 1987 was no exception. It turned out to be the ninth driest this century in Northern California's Sacramento River basin. I'd like to summarize for you some interesting facts about water year 1987 and how it affected rainfall, snowpack, runoff, and water storage in California.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The early-Holocene warm period, ca. 9000 years ago, is a realistic analog for the possible effects of greenhouse warming. At that time the vegetation of the western Sierra Nevada resembled that currently found east of the crest. ... Tourism, water supply, and the logging industry will be negatively effected if climate changes during the next century are in the direction and magnitude of those of the early Holocene. Increased precipitation in the eastern Sierra could offset some of the effects.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The recent changes in phytoplankton production and community composition within the Suisun Bay and Sacramento-San Joaquin Delta may be related to climate. Chlorophyll a concentration, decreased by 42% (spring-summer) and 29% (fall) between 1972 through 1976 and 1977 through 1981. The decrease in biomass was characterized by a shift in phytoplankton community dominance from Skeletonema spp., Cyclotella spp. and Coscinodiscus spp. to Melosira granulata. The possible influence of climate on phytoplankton abundance was suggested by multivariate statistical analyses that demonstrated an association between changes in phytoplankton community composition and abundance between 1975 and 1982 and the climate related variables wind velocity, precipitation, river flow and water temperature.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The 1983 El Nino resulted in a decrease in the flux of diatoms and planktonic foraminiferans into the Santa Barbara basin. These may both be related to the decrease in productivity and therefore standing crops of these two groups.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): We provide here an estimate of the extent that modern climate in the southwest US is sensitive to changes in several parameters that reflect global climatic changes. For the purposes of this study, we define modern climate as mean monthly values for the months of February and August (called winter and summer, respectively) of temperature and precipitation, at points representing the average of cells of dimension 7.5' on a side. The area studied surrounds the drainage basin of Death Valley, California.
Resumo:
Although the mechanisms of climatic fluctuations are not completely understood, changes in global solar irradiance show a link with regional precipitation. A proposed mechanism for this linkage begins with absorption of varying amounts of solar energy by tropical oceans, which may aid in development of ocean temperature anomalies. These anomalies are then transported by major ocean currents to locations where the stored energy is released into the atmosphere, altering pressure and moisture patterns that can ultimately affect regional precipitation. Correlation coefficients between annual averages of monthly differences in empirically modeled solar-irradiance variations and annual state-divisional precipitation values in the United States for 1950 to 1988 were computed with lag times of 0 to 7 years. The highest correlations (R=0.65) occur in the Pacific Northwest with a lag time of 4 years, which is about equal to the travel time of water within the Pacific Gyre from the western tropical Pacific Ocean to the Gulf of Alaska. With positive correlations, droughts coincide with periods of negative irradiance differences (dry, high-pressure development), and wet periods coincide with periods of positive differences (moist, low-pressure development).
Resumo:
Linear regression models are constructed to predict seasonal runoff by fitting streamflow to temperature, precipitation, and snow water content across a range of elevations. The models are quite successful in capturing the differences in discharge between different elevation watersheds and their interannual variations. This exercise thus provides insight into seasonal changes in streamflow at different elevation watersheds that might occur under a changed climate.
Resumo:
Since the inception of the LTER Program in 1980, climate has been studied at individual LTER sites and an LTER Climate Committee has been responsible for inter-site activities. At individual sites, climate studies support ecological research, emphasize inter-site heterogeneity, and often relate to other national monitoring and research programs. In inter-site work, the Climate Committee has produced protocols for meteorological observations, described and compared climates of the first 11 sites, and raised important issues regarding climate variability and ecosystem response.
Resumo:
Previous consideration of the relationship between climate and the survival rate of Pacific salmon eggs and fry has been confined to effects of large variation in the ambient freshwater environment; e.g., stream discharge, temperature, turbidity. This analysis shows sea surface temperatures during the last year of life of maturing adult salmon are also strongly associated with the subsequent survival rate of salmon eggs and fry is fresh water, presumably through development of the future eggs or sperm. In several stocks of three species of North American salmon, the association between the "marine" climate and egg survival is stronger than, or additive to, any estimated climatic association in fresh water. This apparent and surprising link between fresh water and the distant ocean has some interesting and complex implications for management of future salmon production.
Resumo:
Long-term hydrologic studies in the Arctic simply do not exist. Although the Arctic has been identified as an area that is extremely sensitive to climate change, continuous scientific research has been limited to the past seven years. Earlier research was spotty, of short duration, and directed at only one or two hydrologic elements. Immediate future research needs to encompass all the major hydrologic elements, including winter processes, and needs to address the problem of scaling from small to larger areas in hydrologic models. Also, an international program of cooperation between northern countries is needed to build a greater scientific base for monitoring and identifying potential changes wrought by the climate.