904 resultados para Blink kinematics
Resumo:
Objectives: To study the effect of additional strengthening of hip abductor and lateral rotator muscles in a strengthening quadriceps exercise rehabilitation programme for patients with the patellofemoral pain syndrome. Design: Randomized controlled pilot trial. Setting: Clinical setting with home programme. Participants: Fourteen patients with patellofemoral pain syndrome. Intervention: The subjects were randomly assigned to the intervention group (strengthening of quadriceps plus strengthening of hip abductor and lateral rotator muscles) or to the control group (strengthening of quadriceps). Both groups participated in a six-week home exercise protocol. Main outcome measures: The perceived pain symptoms, isokinetic eccentric knee extensor, hip abductor and lateral rotator torques and the gluteus medius electromyographic activity were assessed before and after treatment. Parametric and non-parametric tests were used to compare the groups before and after treatment with alpha = 0.05. Results: Only the intervention group improved perceived pain symptoms during functional activities (P=0.02-0.04) and also increased their gluteus medius electromyographic activity during isometric voluntary contraction (P=0.03), Eccentric knee extensors torque increased in both groups (P=0.04 and P=0.02). There was no statistically significant difference in the hip muscles torque in either group. Conclusion: Supplementation of strengthening of hip abductor and lateral rotator muscles in a strengthening quadriceps exercise programme provided additional benefits with respect to the perceived pain symptoms during functional activities in patients with patellofemoral pain syndrome after six weeks of treatment.
Resumo:
This paper aims to formulate and investigate the application of various nonlinear H(infinity) control methods to a fiee-floating space manipulator subject to parametric uncertainties and external disturbances. From a tutorial perspective, a model-based approach and adaptive procedures based on linear parametrization, neural networks and fuzzy systems are covered by this work. A comparative study is conducted based on experimental implementations performed with an actual underactuated fixed-base planar manipulator which is, following the DEM concept, dynamically equivalent to a free-floating space manipulator. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The most ordinary finite element formulations for 3D frame analysis do not consider the warping of cross-sections as part of their kinematics. So the stiffness, regarding torsion, should be directly introduced by the user into the computational software and the bar is treated as it is working under no warping hypothesis. This approach does not give good results for general structural elements applied in engineering. Both displacement and stress calculation reveal sensible deficiencies for both linear and non-linear applications. For linear analysis, displacements can be corrected by assuming a stiffness that results in acceptable global displacements of the analyzed structure. However, the stress calculation will be far from reality. For nonlinear analysis the deficiencies are even worse. In the past forty years, some special structural matrix analysis and finite element formulations have been proposed in literature to include warping and the bending-torsion effects for 3D general frame analysis considering both linear and non-linear situations. In this work, using a kinematics improvement technique, the degree of freedom ""warping intensity"" is introduced following a new approach for 3D frame elements. This degree of freedom is associated with the warping basic mode, a geometric characteristic of the cross-section, It does not have a direct relation with the rate of twist rotation along the longitudinal axis, as in existent formulations. Moreover, a linear strain variation mode is provided for the geometric non-linear approach, for which complete 3D constitutive relation (Saint-Venant Kirchhoff) is adopted. The proposed technique allows the consideration of inhomogeneous cross-sections with any geometry. Various examples are shown to demonstrate the accuracy and applicability of the proposed formulation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This study presents an alternative three-dimensional geometric non-linear frame formulation based on generalized unconstrained vector and positions to solve structures and mechanisms subjected to dynamic loading. The formulation is classified as total Lagrangian with exact kinematics description. The resulting element presents warping and non-constant transverse strain modes, which guarantees locking-free behavior for the adopted three-dimensional constitutive relation, Saint-Venant-Kirchhoff, for instance. The application of generalized vectors is an alternative to the use of finite rotations and rigid triad`s formulae. Spherical and revolute joints are considered and selected dynamic and static examples are presented to demonstrate the accuracy and generality of the proposed technique. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this study is to apply robust inverse dynamics control for a six-degree-of-freedom flight simulator motion system. From an implementation viewpoint, simplification of the inverse dynamics control law is introduced by assuming control law matrices as constants. The robust control strategy is applied in the outer loop of the inverse dynamic control to counteract the effects of imperfect compensation due this simplification. The control strategy is designed using the Lyapunov stability theory. Forward and inverse kinematics and a full dynamic model of a six-degree-of-freedom motion base driven by electromechanical actuators are briefly presented. A describing function, acceleration step response and some maneuvers computed from the washout filter were used to evaluate the performance of the controllers.
Resumo:
This paper presents an analytical method for analyzing trusses with severe geometrically nonlinear behavior. The main objective is to find analytical solutions for trusses with different axial forces in the bars. The methodology is based on truss kinematics, elastic constitutive laws and equilibrium of nodal forces. The proposed formulation can be applied to hyper elastic materials, such as rubber and elastic foams. A Von Mises truss with two bars made by different materials is analyzed to show the accuracy of this methodology.
Resumo:
This experiment investigated whether the stability of rhythmic unimanual movements is primarily a function of perceptual/spatial orientation or neuro-mechanical in nature. Eight participants performed rhythmic flexion and extension movements of the left wrist for 30 s at a frequency of 2.25 Hz paced by an auditory metronome. Each participant performed 8 flex-on-the-beat trials and 8 extend-on-the-beat trials in one of two load conditions, loaded and unload. In the loaded condition, a servo-controlled torque motor was used to apply a small viscous load that resisted the flexion phase of the movement only. Both the amplitude and frequency of the movement generated in the loaded and unloaded conditions were statistically equivalent. However, in the loaded condition movements in which participants were required to flex-on-the-beat became less stable (more variable) while extend-on-the-beat movements remained unchanged compared with the unload condition. The small alteration in required muscle force was sufficient to result in reliable changes in movement stability even a situation where the movement kinematics were identical. These findings support the notion that muscular constraints, independent of spatial dependencies, can be sufficiently strong to reliably influence coordination in a simple unimanual task.
Resumo:
The magnitude of a startle reflex is inhibited if the reflex-eliciting stimuli is preceded by a prepulse stimulus at a short lead interval. Previous research in humans has shown that the extent of prepulse inhibition decreases over repeated presentations of reflex stimuli and prepulse-reflex stimulus pairings. The present study (N=70) investigated the effect of repeated presentations of prepulse stimuli, reflex stimuli, or prepulse-reflex stimulus pairings on prepulse inhibition. Five groups of subjects were presented during habituation training with either (a) reflex stimuli, (b) prepulse-reflex stimulus pairings, (c) a random sequence of prepulse and reflex stimuli, (d) prepulse stimuli, or (e) experimentally irrelevant light stimuli. Prepulse inhibition was reduced if startle stimuli were presented during habituation ((a), (b), (c)), but not after repeated presentation of the prepulse or the light stimulus ((d), (e)). The reduction in prepulse inhibition was abolished after dishabituation of the startle reflex. The present results indicate that habituation of the startle reflex can result in a reduction of prepulse inhibition. (C) 1998 Elsevier Science B.V.
Resumo:
1, Studies of evolutionary temperature adaptation of muscle and locomotor performance in fish are reviewed with a focus on the Antarctic fauna living at subzero temperatures. 2. Only limited data are available to compare the sustained and burst swimming kinematics and performance of Antarctic, temperate and tropical species. Available data indicate that low temperatures limit maximum swimming performance and this is especially evident in fish larvae. 3, In a recent study, muscle performance in the Antarctic rock cod Notothenia coriiceps at 0 degrees C was found to be sufficient to produce maximum velocities during burst swimming that were similar to those seen in the sculpin Myoxocephalus scorpius at 10 degrees C, indicating temperature compensation of muscle and locomotor performance in the Antarctic fish. However, at 15 degrees C, sculpin produce maximum swimming velocities greater than N, coriiceps at 0 degrees C, 4, It is recommended that strict hypothesis-driven investigations using ecologically relevant measures of performance are undertaken to study temperature adaptation in Antarctic fish, Recent detailed phylogenetic analyses of the Antarctic fish fauna and their temperate relatives will allow a stronger experimental approach by helping to separate what is due to adaptation to the cold and what is due to phylogeny alone.
Resumo:
Abnormal lower-limb biomechanics-in particular, abnormal pronation of the subtalar joint with concomitant increased internal rotation of the tibia-is one of the major causes of overuse injuries of the lower limb. A randomized, controlled, within-subjects research design (N = 14) was used to investigate the effect of a temporary felt orthosis and an antipronation taping technique to control the transverse tibial rotation position immediately after application and after each of two 10-minute periods of exercise. The results showed that the taping technique was superior to both the orthosis and no intervention in controlling tibial rotation position immediately after application and after 10 minutes of exercise. After 20 minutes of exercise, neither the tape nor the orthosis was significantly superior to the control; however, the trends suggested that some residual control was maintained. Future studies are needed to determine the amount of foot pronation control required to relieve symptoms in a symptomatic population in order to determine the clinical effectiveness of these treatment methods.
Resumo:
Previous analyses of thermal acclimation of locomotor performance in amphibians have only examined the adult life history stage and indicate that the locomotor system is unable to undergo acclimatory changes to temperature. In this study, we examined the ability of tadpoles of the striped marsh frog (Limnodynastes peronii) to acclimate their locomotor system by exposing them to either 10 degrees C or 24 degrees C for 6 weeks and testing their burst swimming performance at 10, 24, and 34 degrees C. At the test temperature of 10 degrees C, maximum velocity (U-max) of the 10 degrees C-acclimated tadpoles was 47% greater and maximum acceleration (A(max)) 53% greater than the 24 degrees C-acclimated animals. At 24 degrees C, U-max was 16% greater in the 10 degrees C-acclimation group, while there was no significant difference in A(max) or the time taken to reach U-max (T-U-max). At 34 degrees C, there was no difference between the acclimation groups in either U-max or A(max), however T-U-max was 36% faster in the 24 degrees C-acclimation group. This is the first study to report an amphibian (larva or adult) possessing the capacity to compensate for cool temperatures by thermal acclimation of locomotor performance. To determine whether acclimation period affected the magnitude of the acclimatory response, we also acclimated tadpoles of L. peronii to 10 degrees C for 8 months and compared their swimming performance with tadpoles acclimated to 10 degrees C for 6 weeks. At the test temperatures of 24 degrees C and 34 degrees C, U-max and A(max) were significantly slower in the tadpoles acclimated to 10 degrees C for 8 months. At 10 degrees C, T-U-max was 40% faster in the 8-month group, while there were no differences in either U-max or A(max). Although locomotor performance was enhanced at 10 degrees C by a longer acclimation period, this was at the expense of performance at higher temperatures.
Resumo:
We derive a general thermo-mechanical theory for particulate materials consisting of granules of arbitrary whose material points possess three translational and three independent rotational degrees of freedom. Additional field variables are the translational and rotational granular temperatures, the kinetic energies shape and size. The kinematics of granulate is described within the framework of a polar continuum theory of the velocity and spin fluctuations respectively and the usual thermodynamic temperature. We distinguish between averages over particle categories (averages in mass/velocity and moment of inertia/spin space, respectively) and particle phases where the average extends over distinct subsets of particle categories (multi phase flows). The relationship between the thermal energy in the granular system and phonon energy in a molecular system is briefly discussed in the main body of the paper and discussed in detail in the Appendix A. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We present a new set of deep H I observations of member galaxies of the Fornax cluster. We detected 35 cluster galaxies in H I. The resulting sample, the most comprehensive to date, is used to investigate the distribution of neutral hydrogen in the cluster galaxies. We compare the H I content of the detected cluster galaxies with that of field galaxies by measuring H I mass-to-light ratios and the H I deficiency parameter of Solanes et al. (1996). The mean H I mass-to-light ratio of the cluster galaxies is 0.68 +/- 0.15, significantly lower than for a sample of H I-selected field galaxies (1.15 +/- 0.10), although not as low as in the Virgo cluster (0.45 +/- 0.03). In addition, the H I content of two cluster galaxies (NGC1316C and NGC1326B) appears to have been affected by interactions. The mean H I deficiency for the cluster is 0.38 +/- 0.09 (for galaxy types T = 1-6), significantly greater than for the field sample (0.05 +/- 0.03). Both these tests show that Fornax cluster galaxies are H I-deficient compared to field galaxies. The kinematics of the cluster galaxies suggests that the H I deficiency may be caused by ram-pressure stripping of galaxies on orbits that pass close to the cluster core. We also derive the most complete B-band Tully-Fisher relation of inclined spiral galaxies in Fornax. A subcluster in the South-West of the main cluster contributes considerably to the scatter. The scatter for galaxies in the main cluster alone is 0.50 mag, which is slightly larger than the intrinsic scatter of 0.4 mag. We use the Tully-Fisher relation to derive a distance modulus of Fornax relative to the Virgo cluster of -0.38 +/- 0.14 mag. The galaxies in the subcluster are (1.0 +/- 0.5) mag brighter than the galaxies of the main cluster, indicating that they are situated in the foreground. With their mean velocity 95 km s(-1) higher than that of the main cluster we conclude that the subcluster is falling into the main Fornax cluster.
Resumo:
A revised kinematic model for the motions of Africa and Iberia relative to Europe since the Middle Jurassic is presented in order to provide boundary conditions for Alpine-Mediterranean reconstructions. These motions were calculated using up-to-date kinematic data predominantly based on magnetic isochrons in the Atlantic Ocean and published by various authors during the last 15 years. It is shown that convergence of Africa with respect to Europe commenced during the Cretaceous Normal Superchron (CNS), between chrons MO and 34 (120-83 Ma). This motion was subjected to fluctuations in convergence rates characterised by two periods of relatively rapid convergence (during Late Cretaceous and Eocene-Oligocene times) that alternated with periods of slower convergence (during the Paleocene and since the Early Miocene). Distinct changes in plate kinematics are recognised in the motion of Iberia with respect to Europe, indicated by: (1) a Late Jurassic-Early Cretaceous left-lateral strike-slip motion; (2) Late Cretaceous convergence; (3) Paleocene quiescence; (4) a short period of right-lateral strike-slip motion; and (5) final Eocene-Oligocene convergence. Based on these results, it is speculated that a collisional episode in the Alpine orogeny at ca. 65 Ma resulted in a dramatic decrease in the relative plate motions and that a slower motion since the Early Miocene promoted extension in the Mediterranean back-arc basins. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The present study (N532) investigated attentional modulation of the startle blink reflex at long lead intervals under conditions of differing emotional valence. Participants performed a visual discrimination and counting task while coloured lights indicated whether it was possible for the participant to receive an electrotactile shock (threat of shock) or if no shock would be presented (safe). Latency and magnitude of startle responses to probes during inter-stimulus intervals were facilitated during threat periods relative to safe periods. Startle latency and magnitude modulation were enhanced during attended discrimination and counting task stimuli relative to startle during ignored stimuli. This attention effect did not vary under threat or safe conditions, suggesting that attentional startle modulation is not affected by the emotional valence of the context.