973 resultados para Bismuth zinc niobium oxide


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular mechanics calculations were done on tetrahedral phosphine oxide zinc complexes in simulated water, benzene and hexane phases using the DREIDING II force field in the BIOGRAF molecular modeling program. The SUN workstation computer (SUN_ 4c, with SPARK station 1 processor) was used for the calculations. Experimental structural information used in the parameterization was obtained from the September 1989 version of the Cambridge Structural Database. 2 Steric and solvation energies were calculated for complexes of the type ZnCl2 (RlO)2' The calculations were done with and without inclusion of electrostatic interactions. More reliable simulation results were obtained without inclusion of charges. In the simulated gas phase, the steric energies increase regularly with number of carbons in the alkyl group, whereas they go through a maximum when solvent shells are included in the calculation. Simulated distribution ratios vary with chain length and type of chain branching and the complexes are found to be more favourable for extraction by benzene than by hexane, in accord with experimental data. Also, in line with what would be expected for a favorable extraction, calculations without electrostatics predict that the complexes are better solvated by the organic solvents than by water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Au cours de la dernière décennie, les nanoparticules ont connu un essor sans précédent dans plusieurs domaines. On peut retrouver ces nanoparticules dans des secteurs aussi variés tels que la médecine, l’électronique, les écrans solaires, les cosmétiques et les plastiques, pour ne nommer que ceux-là. Cette utilisation massive a eu un effet pervers sur l’environnement, sachant qu’une grande partie de ces produits se sont retrouvés inévitablement dans les milieux naturels. Plusieurs études révèlent qu’autant la présence des nanoparticules que leurs produits de dissolution sont à prendre en considération lorsque des travaux toxicologiques ou le devenir de ces matériaux sont étudiés. Il est désormais clair que les propriétés de surface de ces nanoparticules jouent un rôle central sur leur comportement dans les solutions aqueuses; que ce soit les interactions avec des organismes ou entre les particules elles-mêmes. Afin d’évaluer le devenir de nZnO, une étude sur la dissolution ainsi que la bioaccumulation a été réalisée avec l’algue modèle Chlamydomonas reinhardtii en présence de nanoparticules ayant différents enrobages. Les nanoparticules d’oxyde de zinc suivantes ont été étudiées : (i) nZnO sans enrobage (nZnO); (ii) nZnO avec enrobage d’acide polyacrylique (nZnO-PAA) et (iii) nZnO avec enrobage d’hexamétaphosphate de sodium (nZnO-HMP). La dissolution était mesurée à l’aide de trois techniques : ultrafiltration par centrifugation (CU); technique potentiométrique (scanned stripping chronopotentiometry, SSCP) et spectrométrie de masse – plasma à couplage inductif couplé à une résine échangeuse d’ions (resin-based inductively coupled plasma-mass spectrometry, resin-based ICP-MS). Les résultats obtenus démontrent une grande tendance à la dissolution pour le nZnO (presque totale) tandis que pour le nZnO-PAA et le nZnO-HMP, la dissolution est dépendante de la nature de l’enrobage le composant. Pour la bioaccumulation sur l’algue testée, les données montrent une grande dépendance au zinc libre issu de la dissolution pour nZnO et nZnO-PAA. À l’inverse, le nZnO-HMP démontre une bioaccumulation plus élevée par comparaison aux mêmes concentrations d’expositions du zinc libre, expliquée par la stimulation de l’internalisation du zinc provoqué par la présence de phosphate constituant l’enrobage de nZnO-HMP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le but de cette thèse était d’étudier la dynamique de croissance par pulvérisation par plasma RF magnétron des couches minces à base d’oxyde de zinc destinées à des applications électroniques, optoélectroniques et photoniques de pointe. Dans ce contexte, nous avons mis au point plusieurs diagnostics permettant de caractériser les espèces neutres et chargées dans ce type de plasmas, notamment la sonde électrostatique, la spectroscopie optique d’émission et d’absorption, ainsi que la spectrométrie de masse. Par la suite, nous avons tenté de corréler certaines caractéristiques physiques de croissance des couches de ZnO, en particulier la vitesse de dépôt, aux propriétés fondamentales du plasma. Nos résultats ont montré que l’éjection d’atomes de Zn, In et O au cours de la pulvérisation RF magnétron de cibles de Zn, ZnO et In2O3 n’influence que très peu la densité d’ions positifs (et donc la densité d’électrons en supposant la quasi-neutralité) ainsi que la fonction de distribution en énergie des électrons (populations de basse et haute énergie). Cependant, le rapport entre la densité d’atomes d’argon métastables (3P2) sur la densité électronique décroît lorsque la densité d’atomes de Zn augmente, un effet pouvant être attribué à l’ionisation des atomes de Zn par effet Penning. De plus, dans les conditions opératoires étudiées (plasmas de basse pression, < 100 mTorr), la thermalisation des atomes pulvérisés par collisions avec les atomes en phase gazeuse demeure incomplète. Nous avons montré que l’une des conséquences de ce résultat est la présence d’ions Zn+ suprathermiques près du substrat. Finalement, nous avons corrélé la quantité d’atomes de Zn pulvérisés déterminée par spectroscopie d’émission avec la vitesse de dépôt d’une couche mince de ZnO mesurée par ellipsométrie spectroscopique. Ces travaux ont permis de mettre en évidence que ce sont majoritairement les atomes de Zn (et non les espèces excitées et/ou ioniques) qui gouvernent la dynamique de croissance par pulvérisation RF magnétron des couches minces de ZnO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing interest in the interaction of light with electricity and electronically active materials made the materials and techniques for producing semitransparent electrically conducting films particularly attractive. Transparent conductors have found major applications in a number of electronic and optoelectronic devices including resistors, transparent heating elements, antistatic and electromagnetic shield coatings, transparent electrode for solar cells, antireflection coatings, heat reflecting mirrors in glass windows and many other. Tin doped indium oxide (indium tin oxide or ITO) is one of the most commonly used transparent conducting oxides. At present and likely well into the future this material offers best available performance in terms of conductivity and transmittivity combined with excellent environmental stability, reproducibility and good surface morphology. Although partial transparency, with a reduction in conductivity, can be obtained for very thin metallic films, high transparency and simultaneously high conductivity cannot be attained in intrinsic stoichiometric materials. The only way this can be achieved is by creating electron degeneracy in a wide bandgap (Eg > 3eV or more for visible radiation) material by controllably introducing non-stoichiometry and/or appropriate dopants. These conditions can be conveniently met for ITO as well as a number of other materials like Zinc oxide, Cadmium oxide etc. ITO shows interesting and technologically important combination of properties viz high luminous transmittance, high IR reflectance, good electrical conductivity, excellent substrate adherence and chemical inertness. ITO is a key part of solar cells, window coatings, energy efficient buildings, and flat panel displays. In solar cells, ITO can be the transparent, conducting top layer that lets light into the cell to shine the junction and lets electricity flow out. Improving the ITO layer can help improve the solar cell efficiency. A transparent ii conducting oxide is a material with high transparency in a derived part of the spectrum and high electrical conductivity. Beyond these key properties of transparent conducting oxides (TCOs), ITO has a number of other key characteristics. The structure of ITO can be amorphous, crystalline, or mixed, depending on the deposition temperature and atmosphere. The electro-optical properties are a function of the crystallinity of the material. In general, ITO deposited at room temperature is amorphous, and ITO deposited at higher temperatures is crystalline. Depositing at high temperatures is more expensive than at room temperature, and this method may not be compatible with the underlying devices. The main objective of this thesis work is to optimise the growth conditions of Indium tin oxide thin films at low processing temperatures. The films are prepared by radio frequency magnetron sputtering under various deposition conditions. The films are also deposited on to flexible substrates by employing bias sputtering technique. The films thus grown were characterised using different tools. A powder x-ray diffractometer was used to analyse the crystalline nature of the films. The energy dispersive x-ray analysis (EDX) and scanning electron microscopy (SEM) were used for evaluating the composition and morphology of the films. Optical properties were investigated using the UVVIS- NIR spectrophotometer by recording the transmission/absorption spectra. The electrical properties were studied using vander Pauw four probe technique. The plasma generated during the sputtering of the ITO target was analysed using Langmuir probe and optical emission spectral studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PP has been getting much attention over the years because it is a very durable polymer commonly used in aggressive environments including automotive battery casings, fuel containers etc. They are used to make bottles, fibers for clothing, components in cars etc. However, it has some shortcomings such as low dimensional and thermal stability. Materials such as metal oxides with sizes of the order 1–50 nm have received a great deal of attention because of their versatile applications in polymer/ inorganic nanocomposites, optoelectronic devices, biomedical materials, and other areas. They are stable under harsh process conditions and also regarded as safe materials to human beings and animals. In the present investigation, PP is modified by incorporating metal oxide nanoparticles such as ZnO and TiO2 by simple melt mixing method. Melt spinning method was used to prepare PP/metal oxide nanocomposite fibers. Various studies have been carried out on these composites and fibers. In the first part of the study, ZnO nanoparticles were prepared from ZnCl2 and NaOH in presence of chitosan, PVA, ethanol and starch. This is a simple and inexpensive method compared to other methods. Change in morphology and particle size of ZnO were studied. Least particle size was obtained in chitosan medium. The particles were characterized by using XRD, SEM, TEM, TGA and EDAX. Antibacterial properties of ZnO prepared in chitosan medium (NZO) and commercial zinc oxide (CZO) were evaluated using a gram positive and a gram negative bacteria

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the main challenges in the development of metal-oxide gas sensors is enhancement of selectivity to a particular gas. Currently, two general approaches exist for enhancing the selective properties of sensors. The first one is aimed at preparing a material that is specifically sensitive to one compound and has low or zero cross-sensitivity to other compounds that may be present in the working atmosphere. To do this, the optimal temperature, doping elements, and their concentrations are investigated. Nonetheless, it is usually very difficult to achieve an absolutely selective metal oxide gas sensor in practice. Another approach is based on the preparation of materials for discrimination between several analyte in a mixture. It is impossible to do this by using one sensor signal. Therefore, it is usually done either by modulation of sensor temperature or by using sensor arrays. The present work focus on the characterization of n-type semiconducting metal oxides like Tungsten oxide (WO3), Zinc Oxide (ZnO) and Indium oxide (In2O3) for the gas sensing purpose. For the purpose of gas sensing thick as well as thin films were fabricated. Two different gases, NO2 and H2S gases were selected in order to study the gas sensing behaviour of these metal oxides. To study the problem associated with selectivity the metal oxides were doped with metals and the gas sensing characteristics were investigated. The present thesis is entitled “Development of semiconductor metal oxide gas sensors for the detection of NO2 and H2S gases” and consists of six chapters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tellurite glasses are photonic materials of special interest to the branch of optoelectronic and communication, due to its important optical properties such as high refractive index, broad IR transmittance, low phonon energy etc. Tellurite glasses are solutions to the search of potential candidates for nonlinear optical devices. Low phonon energy makes it an efficient host for dopant ions like rare earths, allowing a better environment for radiative transitions. The dopant ions maintain majority of their individual properties in the glass matrix. Tellurites are less toxic than chalcogenides, more chemically and thermally stable which makes them a highly suitable fiber material for nonlinear applications in the midinfrared and they are of increased research interest in applications like laser, amplifier, sensor etc. Low melting point and glass transition temperature helps tellurite glass preparation easier than other glass families. In order to probe into the versatility of tellurite glasses in optoelectronic industry; we have synthesized and undertaken various optical studies on tellurite glasses. We have proved that the highly nonlinear tellurite glasses are suitable candidates in optical limiting, with comparatively lower optical limiting threshold. Tuning the optical properties of glasses is an important factor in the optoelectronic research. We have found that thermal poling is an efficient mechanism in tuning the optical properties of these materials. Another important nonlinear phenomenon found in zinc tellurite glasses is their ability to switch from reverse saturable absorption to saturable absorption in the presence of lanthanide ions. The proposed thesis to be submitted will have seven chapters

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The efficient fertilizer use contend micronutrient depends, also, of the interactions that occur with some nutrients. The objective was to study the interaction of zinc with the excessively nutrient ones in function of the application of different doses and sources of Zn saw seed in the culture of the rice. The experiment was carried through in conditions of vegetation house, in the FCAV/Unesp. The used experimental delineation was entirely cazualized, with three repetitions. The treatments had been five doses: 0; 1,0; 2,0; 4,0 and 8,0 g of Zn for kg of seed; e two zinc sources; sulphate of zinc (22% of Zn) and zinc oxide (50% of Zn). The experimental unit was a translucent polyethylene tray, filled with 5 washed thick sand, where 50 seeds of rice had been sown (to var. Caiapo). To the 30 days after the sowing, effected the cut of the plants, separating them in aerial part and roots. From the results of the dry substance and text of nutrients of the aerial part and root of the rice, the accumulation of the nutrients in the respective agencies of the plants was calculated. Becoming fullfilled it variance analysis and the when necessary unfoldings. It had effect of the interactions in distinguishing way between root and aerial part of rice, with regard to the doses and sources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bismuth germanate glasses are interesting materials due to their physical properties and their unique structural characteristics caused by the coordination changes of bismuth and germanium atoms. Glasses of the bismuth germanate system were prepared by melting/molding method and were investigated concerning their thermal and structural properties. The structural analysis of the samples was carried out by micro-Raman and Fourier transform infrared spectroscopes. It was observed that the glass structure is formed basically by GeO(4) tetrahedral units also having the formation of the GeO(6) octahedral units. BiO(2) was considered a network former by observing the presence of octahedral BiO(6) and pyramidal BiO(3) groups in the local structure of the samples. An absorption band observed at 1103 cm(-1) in the IR spectrum of the undoped glass was attributed to the Bi-O-Ge and/or Bi-O-Bi linkage vibration. The said band shifted to lower wavenumbers after the CeO(2) addition thus reflecting changes in the glass network. Cerium oxide was an efficient oxidant agent to prevent the darkening of the glasses which was probably associated to the reduction of Bi ions. However, CeO(2) was incorporated as a local network modifier in the glass structure even at concentrations of 0.2 mol%. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrodeposition of bismuth on gold microelectrodes for determination of Pb(II) by square wave anodic stripping voltammetry (SWASV) was accomplished by an in situ procedure in alkaline solution. A linear calibration plot for Pb(II) in the concentration range 40 to 6700 nmol L(-1) (r=0.998) was obtained, the detection limit was found to be 12.5 nmol L(-1) (S/N = 3) and the relative standard deviation in Solutions containing 1 mu mol L(-1) Pb(II) was 4% (n = 12). The analytical performance of the proposed sensor wits tested by measuring the Pb(II) concentration in a wine sample. The result Was in good agreement with the one obtained by GFAAS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multicolor and white light emissions have been achieved in Yb3+, Tm3+ and Ho3+ triply doped heavy metal oxide glasses upon laser excitation at 980 nm. The red (660 nm), green (547 nm) and blue (478 nm) up conversion emissions of the rare earth (RE) ions triply doped TeO2-GeO2-Bi2O3-K2O glass (TGBK) have been investigated as a function of the RE concentration and excitation power of the 980 nm laser diode. The most appropriate combination of RE in the TGBK glass host (1.6 wt% Yb2O3, 0.6 wt% Tm2O3 and 0.1 wt% Ho2O3) has been determined with the purpose to tune the primary colors (RGB) respective emissions and generate white light emission by varying the pump power. The involved infrared to visible up conversion mechanisms mainly consist in a three-photon blue up conversion of Tm3+ ions and a two-photon green and red up conversions of Ho3+ ions. The resulting multicolor emissions have been described according to the CIE-1931 standards. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ferroelectric layefed-perovskite BaBi2Ta2O9 (BBT) has been prepared successfully by solid-state reaction. The influence of pressure and temperature/time annealing regime on the BBT phase formation was analyzed. The powders were characterized by thermal analysis and Xray diffraction and the sintered pellets by scanning electron microscopy. The crystalline BBT phase, free of secondary phases was obtained at 950 degreesC for 2 h. For an applied field strength of 380 kV/cm, a remnant polarization of 7.6 muC/cm(2) and an electric coercive field of 45.7 kV/cm were obtained. (C) 2004 Elsevier B.V. All rights reserved.