227 resultados para Biotransformation
Resumo:
The significance of the gut microbiota as a determinant of drug pharmacokinetics and accordingly therapeutic response is of increasing importance with the advent of modern medicines characterised by low solubility and/or permeability, or modified-release. These physicochemical properties and release kinetics prolong drug residence times within the gastrointestinal tract, wherein biotransformation by commensal microbes can occur. As the evidence base in support of this supplementary metabolic “organ” expands, novel opportunities to engineer the microbiota for clinical benefit have emerged. This review provides an overview of microbe-mediated alteration of drug pharmacokinetics, with particular emphasis on studies demonstrating proof of concept in vivo. Additionally, recent advances in modulating the microbiota to improve clinical response to therapeutics are explored.
Resumo:
As a nematotoxics screening biotechnological system, Solanum tuberosum hairy roots (StHR) and S. tuberosum hairy roots with Meloidogyne chitwoodi co-cultures (StHR/CRKN) were evaluated, with and without the addition of the essential oils (EOs) of Satureja montana and Ruta graveolens. EOs nematotoxic and phytotoxic effects were followed weekly by evaluating nematode population density in the co-cultures as well as growth and volatile profiles of both in vitro cultures types. Growth, measured by the dissimilation method and by fresh and dry weight determination, was inhibited after EO addition. Nematode population increased in control cultures, while in EO-added cultures numbers were kept stable. In addition to each of the EOs main components, and in vitro cultures constitutive volatiles, new volatiles were detected by gas chromatography and gas chromatography coupled to mass spectrometry in both culture types. StHR with CRKN co-cultures showed to be suitable for preliminary assessment of nematotoxic EOs.