842 resultados para Biomedical measurement
Resumo:
The main objective of this work was the development of polymeric structures, gel and films, generated from the dissolution of the Chitin-Glucan Complex (CGC) in biocompatible ionic liquids for biomedical applications. Similar as chitin, CGC is only soluble in some special solvents which are toxic and corrosive. Due to this fact and the urgent development of biomedical applications, the need to use biocompatible ionic liquids to dissolve the CGC is indispensable. For the dissolution of CGC, the biocompatible ionic liquid used was Choline acetate. Two different CGC’s, KiOnutrime from KitoZyme and biologically produced CGC from Faculdade de Ciencias e Tecnologia (FCT) - Universidade Nova de Lisboa, were characterized in order to develop biocompatible wound dressing materials. The similar result is shown in term of the ratio of chitin:glucan, which is 1:1.72 for CGC-FCT and 1:1.69 for CGC-Commercial. For the analysis of metal element content, water and inorganic salts content and protein content, both polymers showed some discrepancies, where the content in CGC-FCT is always higher compared to the commercial one. The different characterization results between CGC-FCT and CGC-Commercial could be addressed to differences in the purification method, and the difference of its original strain yeast, whereas CGC-FCT is derived from P.pastoris and the commercial CGC is from A.niger. This work also investigated the effect of biopolymers, temperature dissolution, non-solvent composition on the characteristics of generated polymeric structure with biocompatible ionic liquid. The films were prepared by casting a polymer mixture, immersion in a non-solvent, followed by drying at ambient temperature. Three different non-solvents were tested in phase inversion method, i.e. water, methanol, and glycerol. The results indicate that the composition of non-solvent in the coagulation bath has great influence in generated polymeric structure. Water was found to be the best coagulant for producing a CGC polymeric film structure. The characterizations that have been done include the analysis of viscosity and viscoelasticity measurement, as well as sugar composition in the membrane and total sugar that was released during the phase inversion method. The rheology test showed that both polymer mixtures exhibit a non- Newtonian shear thinning behaviour. Where the viscosity and viscoelasticity test reveal that CGCFCT mixture has a typical behaviour of a viscous solution with entangled polymer chains and CGCCommercial mixture has true gel behaviour. The experimental results show us that the generated CGC solution from choline acetate could be used to develop both polymeric film structure and gel. The generated structures are thermally stable at 100° C, and are hydrophilic. The produced films have dense structure and mechanical stabilities against puncture up to 60 kPa.
Resumo:
Deep-eutectic solvents (DES) are considered novel renewable and biodegradable solvents, with a cheap and easy synthesis, without waste production. Later it was discovered a new subclass of DES that even can be biocompatible, since their synthesis uses primary metabolites such as amino acids, organic acids and sugars, from organisms. This subclass was named natural deep-eutectic solvents (NADES). Due to their properties it was tried to study the interaction between these solvents and biopolymers, in order to produce functionalized fibers for biomedical applications. In this way, fibers were produced by using the electrospinning technique. However, it was first necessary to study some physical properties of NADES, as well as the influence of water in their properties. It has been concluded that the water has a high influence on NADES properties, which can be seen on the results obtained from the rheology and viscosity studies. The fluid dynamics had changed, as well as the viscosity. Afterwards, it was tested the viability of using a starch blend. First it was tested the dissolution of these biopolymers into NADES, in order to study the viability of their application in electrospinning. However the results obtained were not satisfactory, since the starch polymers studied did not presented any dissolution in any NADES, or even in organic solvents. In this way it was changed the approach, and it was used other biocompatible polymers. Poly(ethylene oxide), poly(vinyl alcohol) and gelatin were the others biopolymers tested for the electrospinning, with NADES. All polymers show good results, since it was possible to obtain fibers. However for gelatin it was used only eutectic mixtures, containing active pharmaceutical ingredients (API’s), instead of NADES. For this case it was used mandelic acid (antimicrobial properties), choline chloride, ibuprofen (anti-inflammatory properties) and menthol (analgesic properties). The polymers and the produced fibers were characterized by scanning electron microscope (SEM), Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). With the help of these techniques it was possible to conclude that it was possible to encapsulate NADES within the fibers. Rheology it was also study for poly(ethylene oxide) and poly(vinyl alcohol), in a way to understand the influence of polymer concentration, on the electrospinning technique. For the gelatin, among the characterization techniques, it was also performed cytotoxicity and drug release studies. The gelatin membranes did not show any toxicity for the cells, since their viability was maintained. Regarding the controlled release profile experiment no conclusion could be drawn from the experiments, due to the rapid and complete dissolution of the gelatin in the buffer solution. However it was possible to quantify the mixture of choline chloride with mandelic acid, allowing thus to complete, and confirm, the information already obtained for the others characterization technique.
Resumo:
Since the invention of photography humans have been using images to capture, store and analyse the act that they are interested in. With the developments in this field, assisted by better computers, it is possible to use image processing technology as an accurate method of analysis and measurement. Image processing's principal qualities are flexibility, adaptability and the ability to easily and quickly process a large amount of information. Successful examples of applications can be seen in several areas of human life, such as biomedical, industry, surveillance, military and mapping. This is so true that there are several Nobel prizes related to imaging. The accurate measurement of deformations, displacements, strain fields and surface defects are challenging in many material tests in Civil Engineering because traditionally these measurements require complex and expensive equipment, plus time consuming calibration. Image processing can be an inexpensive and effective tool for load displacement measurements. Using an adequate image acquisition system and taking advantage of the computation power of modern computers it is possible to accurately measure very small displacements with high precision. On the market there are already several commercial software packages. However they are commercialized at high cost. In this work block-matching algorithms will be used in order to compare the results from image processing with the data obtained with physical transducers during laboratory load tests. In order to test the proposed solutions several load tests were carried out in partnership with researchers from the Civil Engineering Department at Universidade Nova de Lisboa (UNL).
Resumo:
Double Degree. A Work Project presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA- School of Business and Economics and a Masters Degree in Business Engineering from Louvain school of Management
Resumo:
In any business it is very important to measure the performance and it helps to select key information to make better decisions on time. This research focuses on the design and implementation of a performance measurement system in a Portuguese medium size firm operating in the specialized health care transformation vehicles industry. From the evidence that outputs from Auto Ribeiro’s current information system is misaligned with the company’s objectives and strategy, this research tries to solve this business problem through the development of a Balanced Scorecard analysis, although there are some issues, which deserve further development.
Resumo:
Polymeric nanoparticles (PNPs) have attracted considerable interest over the last few years due to their unique properties and behaviors provided by their small size. Such materials could be used in a wide range of applications such as diagnostics and drug delivery. Advantages of PNPs include controlled release, protection of drug molecules and its specific targeting, with concomitant increasing of the therapeutic index. In this work, novel sucrose and cholic acid based PNPs were prepared from different polymers, namely polyethylene glycol (PEG), poly(D,L-lactic-co-glycolic acid) (PLGA) and PLGA-co-PEG copolymer. In these PNP carriers, cholic acid will act as a drug incorporation site and the carbohydrate as targeting moiety. The uptake of nanoparticles into cells usually involves endocytotic processes, which depend primarily on their size and surface characteristics. These properties can be tuned by the nanoparticle preparation method. Therefore, the nanoprecipitation and the emulsion-solvent evaporation method were applied to prepare the PNPs. The influence of various parameters, such as concentration of the starting solution, evaporation method and solvent properties on the nanoparticle size, size distribution and morphology were studied. The PNPs were characterized by using atomic force microscopy (AFM), scanning electron microscopy (SEM) and dynamic light scattering (DLS) to assess their size distribution and morphology. The PNPs obtained by nanoprecipitation ranged in size between 90 nm and 130 nm with a very low polydispersity index (PDI < 0.3). On the other hand, the PNPs produced by the emulsion-solvent evaporation method revealed particle sizes around 300 nm with a high PDI value. More detailed information was found in AFM and SEM images, which demonstrated that all these PNPs were regularly spherical. ζ-potential measurements were satisfactory and evidenced the importance of sucrose moiety on the polymeric system, which was responsible for the obtained negative surface charge, providing colloidal stability. The results of this study show that sucrose and cholic acid based polymeric conjugates can be successfully used to prepare PNPs with tunable physicochemical characteristics. In addition, it provides novel information about the materials used and the methods applied. It is hoped that this work will be useful for the development of novel carbohydrate based nanoparticles for biomedical applications, specifically for targeted drug delivery.
Resumo:
The evolution of receiver architectures, built in modern CMOS technologies, allows the design of high efficient receivers. A key block in modern receivers is the oscillator. The main objective of this thesis is to design a very low power and low area 8-Phase Ring Oscillator for biomedical applications (ISM and WMTS bands). Oscillators with multiphase outputs and variable duty cycles are required. In this thesis we are focused in 12.5% and 50% duty-cycles approaches. The proposed circuit uses eight inverters in a ring structure, in order to generate the output duty cycle of 50%. The duty cycle of 1/8 is achieved through the combination of the longer duty cycle signals in pairs, using, for this purpose, NAND gates. Since the general application are not only the wireless communications context, as well as industrial, scientific and medical plans, the 8-Phase Oscillator is simulated to be wideband between 100 MHz and 1 GHz, and be able to operate in the ISM bands (447 MHz-930 MHz) and WMTS (600 MHz). The circuit prototype is designed in UMC 130 nm CMOS technology. The maximum value of current drawn from a DC power source of 1.2 V, at a maximum frequency of 930 MHz achieved, is 17.54 mA. After completion of the oscillator layout studied (occupied area is 165 μm x 83 μm). Measurement results confirm the expected operating range from the simulations, and therefore, that the oscillator fulfil effectively the goals initially proposed in order to be used as Local Oscillator in RF Modern Receivers.
Resumo:
The spinning rotor gauge (SRG) is one of the most interesting vacuum gauges ever made, covering a pressure range of over seven orders of magnitude, with minimal gas interference (no pumping, ionization or heating of the measured gas), and a great stability of less than 1% drift per year. But despite its remarkable properties, apparently the SRG has not been further developed since the eighties, when it gained commercial interest. In this context, this dissertation aims at providing a starting point for a new line of investigation regarding this instrument, focused on the rotor itself. A brief study of different rotor geometries is provided, including a comparison between a cylindrical rotor and a spherical one. A cylindrical spinning rotor gauge (CSRG) is then proposed, based on the original SRG, but requiring a completely new lateral damping system. A prototype was built and tested against a non calibrated reference gauge.
Resumo:
Evaluation of Cyclosporin A (CyA) blood concentration is imperative in solid organ transplantation in order to achieve maximal immunosuppression with the least side effects. We compared the results of whole blood concentrations of CyA in 50 blood samples simultaneously evaluated by the fluorescent polarization immune assay (TDx) and the enzymatic competitive immune assay (EMIT 2000). There was a strong correlation between both kits for any range of CyA blood concentration (R=0.99, p<0.001). The within-run and between-days coefficient of variation were less than 4% for both assays. The cost for each CyA measurement was 50% lower for the EMIT assay when compared to the TDx assay. We concluded that the EMIT is as accurate as the TDx in measuring CyA blood concentration and has the advantage of a lower cost, as well as the possibility of widespread access to the EMIT methodology in contrast to the TDx equipment, allowing the laboratory to perform several routines within a working day.
Resumo:
The effects of PMSs on the people’s behaviour represent a high degree of relevance in the context of an organization performance and success. Thus, motivational and behavioural consequences of performance measurements are far from being totally understood (Franco-Santos et al., 2012). This work project (WP) purposes going further regarding the consequences/effects on people’s behaviour of using PMSs in organizations. The researcher conducted 11 interviews to managers during a nine-month internship as a controller in a Portuguese multi-national company. The evidence from this WP suggests that the way how managers understand a PMS determines a lot the way how they behave. Data also supports that PMSs influences in several ways motivation, perceptions, participation and job-related stress of managers.
Resumo:
The innovative Horizon 2020 program sponsored by the European Union (EU) aims to promote and develop processes of waste integration in construction materials. However, several potential health hazards caused by building materials have been identified and, there-fore, there is an ongoing need to develop new recycling methods for hazardous wastes and effi-cient barriers in order to prevent toxic releases from the new construction solutions with wastes. This paper presents an overview that focus on two main aspects: the identification of the health risks related to radioactivity and heavy metals present in building materials and identification of these toxic substances in new construction solutions that contain recycled wastes. Different waste materials were selected and distinct methodologies of toxicity evaluation are presented to analyse the potential hazardous, the feasibility of using those wastes and the achievement of op-timal construction solutions involving wastes.
Resumo:
The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton–proton collision data with a centre-of-mass energy of s√=7 TeV corresponding to an integrated luminosity of 4.7 fb −1 . Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells using the anti- kt algorithm with distance parameters R=0.4 or R=0.6 , and are calibrated using MC simulations. A residual JES correction is applied to account for differences between data and MC simulations. This correction and its systematic uncertainty are estimated using a combination of in situ techniques exploiting the transverse momentum balance between a jet and a reference object such as a photon or a Z boson, for 20≤pjetT<1000 GeV and pseudorapidities |η|<4.5 . The effect of multiple proton–proton interactions is corrected for, and an uncertainty is evaluated using in situ techniques. The smallest JES uncertainty of less than 1 % is found in the central calorimeter region ( |η|<1.2 ) for jets with 55≤pjetT<500 GeV . For central jets at lower pT , the uncertainty is about 3 %. A consistent JES estimate is found using measurements of the calorimeter response of single hadrons in proton–proton collisions and test-beam data, which also provide the estimate for pjetT>1 TeV. The calibration of forward jets is derived from dijet pT balance measurements. The resulting uncertainty reaches its largest value of 6 % for low- pT jets at |η|=4.5 . Additional JES uncertainties due to specific event topologies, such as close-by jets or selections of event samples with an enhanced content of jets originating from light quarks or gluons, are also discussed. The magnitude of these uncertainties depends on the event sample used in a given physics analysis, but typically amounts to 0.5–3 %.
Resumo:
A measurement is presented of the tt¯ inclusive production cross section in pp collisions at a center-of-mass energy of s√=8 TeV using data collected by the ATLAS detector at the CERN Large Hadron Collider. The measurement was performed in the lepton+jets final state using a data set corresponding to an integrated luminosity of 20.3 fb−1. The cross section was obtained using a likelihood discriminant fit and b-jet identification was used to improve the signal-to-background ratio. The inclusive tt¯ production cross section was measured to be 260±1(stat)+22−23(stat)±8(lumi)±4(beam) pb assuming a top-quark mass of 172.5 GeV, in good agreement with the theoretical prediction of 253+13−15 pb. The tt¯→(e,μ)+jets production cross section in the fiducial region determined by the detector acceptance is also reported.
Resumo:
A measurement of spin correlation in tt¯ production is presented using data collected with the ATLAS detector at the Large Hadron Collider in proton-proton collisions at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 20.3 fb−1. The correlation between the top and antitop quark spins is extracted from dilepton tt¯ events by using the difference in azimuthal angle between the two charged leptons in the laboratory frame. In the helicity basis the measured degree of correlation corresponds to Ahelicity=0.38±0.04, in agreement with the Standard Model prediction. A search is performed for pair production of top squarks with masses close to the top quark mass decaying to predominantly right-handed top quarks and a light neutralino, the lightest supersymmetric particle. Top squarks with masses between the top quark mass and 191 GeV are excluded at the 95% confidence level.